Location - Madison city
Location - Madison city
Location - Madison city
Location - Madison city

VIEW 3

VIEW 4

VIEW 5
Location - Madison city
Location – Climate conditions

Temperature conditions

[Graph showing temperature conditions with bars and lines representing different months and temperature ranges.]
Location – Climate conditions

Snow conditions

Typical Madison Monthly Snow (inches)

- Jan: 10.9
- Feb: 7.9
- Mar: 6.1
- Apr: 2.3
- May: 0
- Jun: 0
- Jul: 0
- Aug: 0
- Sept: 0
- Oct: 0.3
- Nov: 8.6
- Dec: 10.6
Wind conditions

Number of windy days per month

<table>
<thead>
<tr>
<th>Month</th>
<th>> 15 mph</th>
<th>> 20 mph</th>
<th>> 25 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concepts
Boat – Big Idea

Freedom of sailing + Enthusiasm for knowledge = Boat taking off
Footprint with surrounding buildings, roads and green areas

- Muir Woods
- Muir Knoll viewing platform
- Flow of students
- To the campus
- Atlantic - ARCH 14

Boat – Location
Boat – Location

Footprint with plaza and closer area of interest
Boat – Plaza

Inspiration

Boat
First floor plan

- Small classroom
- Large classroom
- Auditorium
- Instructional
- Student office
- Faculty office
- Support rooms
- Bathrooms
- Hallways

- Boat – Plans

Atlantic - ARCH 17
Boat – Multipurpose stairs

Inspiration
Boat – Touch transparent walls

Walls between classrooms are modular (can be moved around). They are also touch enabled and if needed transparent.
Second floor plan

- Small classroom
- Large classroom
- Instructional
- Student office
- Faculty office
- Support rooms
- Bathrooms
- Hallways

- Instructional Lab: 15 (1060 SF)
- Glass/Collaboration Space: 03 (1300 SF)
- Lobby and Hall: 01 (2600 SF)
- Large Class: 14 (823 SF)
- Small classroom: 12 (580 SF)

Dimensions:
- 36'-6" to 38'-7"
- 27'-6" to 30'-11"
- 5'-6" to 57'-9"
- 9'-5" to 55'-8"
Boat – Open collaboration space

Inspiration

Actual render
Third floor plan

- Small
- classroom
- Large
- Support rooms
- Student office
- Faculty office
- Bathrooms
- Hallways
Boat – Collaboration space

Inspiration
Boat – Meeting/resting spot

Inspiration
Boat – Sight – virtual reality

Atlantic - ARCH 25
Roof terrace
Boat – Roof garden

Inspiration
Boat – Section

Section through roof access
Section through large classroom
Section through auditorium
Skylight with photovoltaic cells baked between glass.
Boat – LED facade

Inspiration

Boat
<table>
<thead>
<tr>
<th></th>
<th>Live (psf)</th>
<th>Dead (psf)</th>
<th>Snow (psf)</th>
<th>Wind (kip)</th>
<th>E (kip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>100</td>
<td>90</td>
<td>23.1</td>
<td>24.45</td>
<td>19.09</td>
</tr>
<tr>
<td>3<sup>rd</sup> floor</td>
<td>57.82</td>
<td>90</td>
<td></td>
<td>46.96</td>
<td>21.26</td>
</tr>
<tr>
<td>2<sup>nd</sup> floor</td>
<td>68.27</td>
<td>90</td>
<td></td>
<td>45.48</td>
<td>10.63</td>
</tr>
<tr>
<td>1<sup>st</sup> floor</td>
<td>84.45</td>
<td>90</td>
<td></td>
<td>22.74</td>
<td></td>
</tr>
<tr>
<td>Wood Alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>100</td>
<td>32</td>
<td>23.1</td>
<td>24.45</td>
<td>21.97</td>
</tr>
<tr>
<td>3<sup>rd</sup> floor</td>
<td>57.82</td>
<td>32</td>
<td></td>
<td>46.96</td>
<td>19.34</td>
</tr>
<tr>
<td>2<sup>nd</sup> floor</td>
<td>68.27</td>
<td>32</td>
<td></td>
<td>45.48</td>
<td>9.67</td>
</tr>
<tr>
<td>1<sup>st</sup> floor</td>
<td>84.45</td>
<td>32</td>
<td></td>
<td>22.74</td>
<td></td>
</tr>
</tbody>
</table>
2nd Floor

- Filler Beams W18x40
- Girder W21x62
- Auditorium Girder W21x62
- Auditorium Filler Beam W18x65
- Column W14x61
3rd Floor

- Filler Beams W18x40
- Girder W21x62
- Auditorium Girder W21x62
- Auditorium Filler Beam
- W18x65
- Column W14x61
Roof

- Filler Beams W18x40
- Girder W21x62
- Auditorium Girder W21x62
- Auditorium Filler Beam W18x65
- Column W14x61
Pu = 309k
Pn = 626k
Pl = 120k

Beams take PL as tension loads
W14x61

Pu = 617k
Pn = 626k

W14x61
Moment Frame

W21x83

W14x193
W21x83

W14x193
W21x83

W14x193

30 ft

12 ft

\[\sum V = 187.03 \text{ Kips} \]
Boat-Wood-Typical Load Path
2nd Floor

- Truss 3’ Deep
- Joists 6.75” x 19.5”
- Shear Walls 4’ Thick
- Columns 15”x 15”
3rd Floor

- Truss 3’ Deep
- Auditorium Truss 5’ Deep
- Joists 6.75” x 19.5”
- Auditorium Joists 6.75” x 9.5”
- Shear Walls 4’ Thick
- Columns 15”x 15”
Roof

- Truss 3’ Deep
- Auditorium Truss 5’ Deep
- Joists 6.75” x 19.5”
- Auditorium Joists 6.75” x 9.5”
- Shear Walls 4’ Thick
- Columns 15”x 15”
Typical Framing

<table>
<thead>
<tr>
<th>Joist</th>
<th>Truss Chord</th>
<th>Truss Diagonal</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75”X19.5”</td>
<td>10”X12”</td>
<td>5”X5”</td>
<td>15”X15”</td>
</tr>
<tr>
<td>6.75”X9.5”</td>
<td>10”12”</td>
<td>5”X5”</td>
<td>10”X10”</td>
</tr>
</tbody>
</table>
Boat-Wood-Column

Pu = 180 k
Pn = 202 k
Pf = 72 k

Beams take PL as tension loads

Exterior Columns

15" X 15"

Interior Columns

Pu = 180 k
Pn = 202 k

15" X 15"
Cross Lam Shear Walls

• Load Combination
 1.2D+1.6W+L+0.5(Lr or S or R)

Control
 1.2D+1.0E+L+0.2S

• \(\Sigma V = 187.03 \) Kips
 Shear Demand = 4.45 Kip/ft
 Thickness = 4 in
 Shear Capacity = 6.94 Kip/ft
 OK
Steel-Composite Deck

- Deflections during construction
- Camber when design beams
- Normal Weight Concrete = 145pcf

Wood-Cross Laminated Timber

- Cross-layered construction
- Reduce carbon footprint
- Ready to assemble system
Mat Foundation

- Avoid water table
- Extra costs of earthwork
- Concrete Slab
- \(Df \) (steel) = \(2.25 \) ft
- \(Df \) (wood) = \(1.5 \) ft
Boat & Wave - Retaining Wall

Atlantic - SE 49
Variable-Air-Volume boxes with overhead diffusers to deliver air, heating and cooling to most spaces

Under-floor air distribution to deliver air, heating and cooling to auditorium
Alternative 2 - ACB

- Chilled beams to deliver heat and cooling to most spaces

- Radiant heat floors in larger spaces

- Overhead delivery of outside air in all spaces
Motivations for Alternatives

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Alt 1 – VAV</th>
<th>Alt 2 – ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>• Simple solution</td>
<td>• Lowered fan energy</td>
</tr>
<tr>
<td></td>
<td>• Adaptable to occupancy flux</td>
<td>• Decreased duct sizes</td>
</tr>
<tr>
<td>Challenges</td>
<td>• Floor sandwich</td>
<td>• Dehumidification</td>
</tr>
<tr>
<td></td>
<td>• UFAD for auditorium</td>
<td>• Extensive piping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Handling flux</td>
</tr>
</tbody>
</table>
Boat Summary

<table>
<thead>
<tr>
<th>Metric</th>
<th>VAV</th>
<th>ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Ventilation</td>
<td>26,000 CFM</td>
<td>13,000 CFM</td>
</tr>
<tr>
<td>Largest Branch</td>
<td>28” x 43”</td>
<td>24” x 46”</td>
</tr>
</tbody>
</table>
Boat – VAV Layout

- 2 AHU: one for main supply, one for auditorium
- Chilled water pump
- Steam to hot water pump
- Domestic water pump
- Storage tank for rainwater
Boat – VAV Layout
Alternative 1 - Vertical Distribution

- MEP Shaft
- Campus Steam, CHW in
- MEP Room
- AHU
- OA
- RA
- SA
Boat – ACB Layout

- Chilled water pump
- Steam to hot water pump
- Domestic water pump
- Storage tank for rainwater
Dedicated Outside Air AHU
Alternative 2 – Vertical Distribution

- MEP Shaft
- MEP Room
- Campus Steam, CHW in
- AHU

- Hot Water
- Chilled Water
- Chilled Beams
ACB Floor Sandwich

Level 3

24' x 31''

8' 3''
Wave – Big Idea

ENERGY OF WAVES + CAPTURING THE LANDSCAPE = FROZEN WAVE
Footprint with surrounding buildings, roads and green areas.
Footprint with plaza and closer area of interest.
Wave – PLaza

Inspiration

Wave
Wave – Plans

First floor plan

- Small classrooms
- Large classrooms
- Student offices
- Faculty offices
- Support rooms
- Bathrooms
- Hallways

Legend:
- Small
- Classroom
- Large
- Classroom
- Auditorium
- Instructional
Wave – Living Wall
Third floor plan

classroom
Auditorium
Student office
Faculty office
Support rooms
Bathrooms
Hallways
Wave – Plans

Roof terrace plan
Wave – Roof terrace

Inspiration
Section through vertical communication
Section through large classroom
Section through communication and roof access
Section through communication and roof access
2nd Floor

- Filler Beam W18x40
- Girder W21x83
- Column W14x61
- Moment Frame (Beam W21X83)
 (Column W14X193)
3rd Floor

- Filler Beams W18x40
- Girder W21x83
- Girder W21x131
- Auditorium Filler Beam
- W18x65
- Column W14x61
- Moment Frame (Beam W21x83)
Roof

- Filler Beams W18x40
- Girder W21x83
- Girder W24x131
- Column W14x61
- Moment Frame (Beam W21X83) (Column W14X193)
Interior Columns

Pu = 410k
Pn = 626 k
W14x61

Exterior Columns

Pu = 265k
Pn = 626 k
Pl = 120k

Beams take PL as tension loads
W14x61

Pu = 410k
Pn = 626 k
W14x61

Interior Columns
Wave-Steel-Lateral System

Moment Frame

W21x83
W14x193
W21x83
W14x193
W21x83
W14x193

38 ft

12 ft

W14x193
W21x83
W14x193
W21x83
W14x193
W21x83

∑V=187.03 Kips

Atlantic - SE 83
Open Web Joist TJM

- 1.5”x4.75” Machine Stress Rated Lumber
- 2” tubular steel member
- Allowable Uniform Load: 119psf (46’ span)

Truss

5”x5” Lumber
Minimum Depth = Span/20”

Load Path

36” ~ 48”
2nd Floor

- Truss 3’ Deep
- Open Web Joists 26” Deep
- Shear Walls 4’ Thick
- Columns 15”x 15”
3rd Floor

- Truss 3’ Deep
- Auditorium Truss 5’ Deep
- Open Web Joists 26” Deep
- Shear Walls 4’ Thick
- Columns 15”x 15”
Wave-Wood-Floor Framing

Roof
- Truss 3’ Deep
- Truss 5’ Deep
- Open Web Joists 26” Deep
- Shear Walls 4’ Thick
- Columns 15”x 15”
- Hang Column 15”X15”

Hang Column
Typical Framing

- **Joist**: TJM26"
- **Truss Chord**: 10"X12"
- **Truss Diagonal**: 6"X6"
- **Column**: 15"X15"

Framing Above Auditorium

- **Length**: 15@4.5´
- **Width**: 38´

<table>
<thead>
<tr>
<th>Joist</th>
<th>Truss Chord</th>
<th>Truss Diagonal</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>TJM26”</td>
<td>10”X12”</td>
<td>6”X6”</td>
<td>15”X15”</td>
</tr>
</tbody>
</table>

Auditorium
Pu = 160k
Pn = 202 k
Pl = 64k

Beams take PL as tension loads
15”X15”

Interior Columns

Pu = 190k
Pn = 202 k

Exterior Columns

15”X15”

Atlantic - SE
Cross Lam Shear Walls

- Load Combination
 1.2D + 1.6W + L + 0.5(Lr or S or R) \[\text{Control}\]
 1.2D + 1.0E + L + 0.2S

- \(\sum V = 187.03\) Kips
 - Shear Demand = 5.30 Kip/ft
 - Shear Capacity = 6.94 Kip/ft \[\text{OK}\]
 - Thickness = 4 in

- If not add shear wall ③,
 - Shear Demand = 7.19 Kip/ft
 - Shear Capacity = 13.87 Kip/ft, Thickness = 6 in \[\text{Not Economic}\]

Economic: 38 ft, 13 ft, 10 ft, 36 ft
Wave Summary

<table>
<thead>
<tr>
<th>Metric</th>
<th>VAV</th>
<th>ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Ventilation</td>
<td>31,000 CFM</td>
<td>14,000 CFM</td>
</tr>
<tr>
<td>Largest Branch</td>
<td>24” x 46”</td>
<td>24” x 31”</td>
</tr>
</tbody>
</table>
Wave – VAV Layout

- 2 AHU: one for main supply, one for auditorium
- Chilled water pump
- Steam to hot water pump
- Domestic water pump
- Storage tank for rainwater
Wave – VAV Layout

Level 2
Wave – VAV Layout

- Dedicated Outside Air AHU
- Chilled water pump
- Steam to hot water pump
- Domestic water pump
- Storage tank for rainwater
Wave – ACB Layout

- Dedicated Outside Air AHU
Access - Road Access

- **Avoided access road**
- **Preferred access roads**
- **Non-preferred access road**

The map illustrates different access routes to a site, highlighting the preferred and avoided access roads.
Schedule – Key milestones

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Conditions</td>
<td></td>
<td></td>
<td></td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substructure</td>
<td></td>
<td></td>
<td>M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Enclosed</td>
<td></td>
<td>M3</td>
<td></td>
<td>M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interiors</td>
<td></td>
</tr>
<tr>
<td>Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Site Plan

Crane Radius 125 feet

- subassembly area
- portable toilets
- rest area
- site trailer
- waste recycle area
- storage area
- mobile crane
- bump-out area (just in time delivery)
- worker access
- site entrance
Completion of Mobilization (5/29/2015)

Completion of Structural System (10/02/2015)

Completion of Project (04/08/2016)
Cat 320D L Hydraulic Excavator

Net Flywheel Power: 148.0 hp
Operating Weight: 44820.0 lb

Price
850 USD/day
2300 USD/week

Cat 226B Series 3 Skid-Steer Loader

Net Flywheel Power: 56.0 hp
Rated Operating Capacity: 1500.0 lb

Price
200 USD/day
600 USD/week
Maximum radius needed ~125ft

Two options depending on the maximum lift

LTM 1090-4.1

Max. lifting capacity 179,000 lbs at 8 ft rad.
Telescopic boom 36 ft - 164 ft
Maximum lift at 119 ft 8.1 kilopounds

LTM 1160-5.1

Max. lifting capacity 352,700 lbs at 10 ft rad.
Telescopic boom 43 ft - 203 ft
Maximum lift at 116ft 18 kilopounds
Production Strategy – Erection sequence

Boat

- Zone 1
- Zone 2
- Zone 3

Wave

- Zone 1
- Zone 2
- Zone 3

Crane
Prefabricated Elements
Multi-trade prefabrication
Production Strategy - Prefabrication

Prefabrication of Multi-functional Facade

Prefabricate the facade with windows in the form of modular facade panels.
Production Strategy - Material suppliers

- **Material suppliers**
 - **DAILY METAL GROUP**
 - Distance: **3.7 miles**
 - Estimated time: **12 min**
 - **WIEDENBECK INC**
 - Distance: **4.6 miles**
 - Estimated Time: **15 min**
Production Strategy - Material suppliers

Wood & SIP-Panels

ACH Foam Technologies, LLC
Distance: 72.2 miles
Estimated Time: 1 hour 19 min

Thermocore Panel Systems
Distance: 341 miles
Estimated Time: 5 ½ hour

Material suppliers:
- Wood & SIP-Panels
- Thermocore Panel Systems
- ACH Foam Technologies, LLC
Constructability – Steel Structure

BENEFITS

- Good strength to weight ratio
- High Consistency in Manufacturing and Erection
- Readily Available in Markets

DRAWBACKS

- Elaborate sequence of advance planning and preparation required
- Low Flexibility in Shape
- Fireproofing concerns
Constructability – Wood Structure

BENEFITS

- Greater flexibility in planning and design
- More shapes can be made
- Almost perfect in a carbon point of view
- Can be more efficient in an operating point of view
- Almost no waste during construction

DRAWBACKS

- Low strength
- Fireproofing concerns
Schedule – Boat

Boat Steel – 230 days

- Site Preparation: 20 days
- Mobilization: 5 days
- Retaining Wall: 15 days
- Substructure: 30 days
- Excavation: 5 days
- Mat Foundation: 25 days
- Shell: 80 days
 - 1st floor: 25 days
 - 2nd floor: 25 days
 - 3rd floor: 25 days
- Roof: 1 day
- Façade: 30 days
- Interiors: 80 days
 - 1st floor: 60 days
 - 2nd floor: 70 days
 - 3rd floor: 80 days
- Services: 45 days
 - 1st floor: 20 days
 - 2nd floor: 25 days
- Roof: 5 days
- Landscaping: 30 days
- Commissioning: 10 days

Boat Wood – 226 days

- Site Preparation: 20 days
- Mobilization: 5 days
- Retaining Wall: 15 days
- Substructure: 30 days
- Excavation: 5 days
- Mat Foundation: 25 days
- Shell: 75 days
 - 1st floor: 12 days
 - 2nd floor: 18 days
 - 3rd floor: 13 days
- Roof: 1 day
- Façade: 30 days
- Interiors: 80 days
 - 1st floor: 60 days
 - 2nd floor: 70 days
 - 3rd floor: 80 days
- Services: 45 days
 - 1st floor: 20 days
 - 2nd floor: 25 days
- Roof: 5 days
- Landscaping: 30 days
- Commissioning: 10 days

Longer duration for the erection of the steel shell
Schedule – Wave

Wave Steel – 245 days

[Diagram of Wave Steel schedule showing 245 days for various tasks]

Wave Wood – 239 days

[Diagram of Wave Wood schedule showing 239 days for various tasks]

Longer duration for Wave roof, facade & interiors
Schedule – Critical path

<table>
<thead>
<tr>
<th>WBS</th>
<th>Task Mode</th>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>Mat Foundation</td>
<td>25 days</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Shell</td>
<td>80 days</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1st floor</td>
<td>15 days</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2nd floor</td>
<td>15 days</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3rd floor</td>
<td>15 days</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Roof</td>
<td>5 days</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Façade</td>
<td>30 days</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Interiors</td>
<td>80 days</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1st floor</td>
<td>60 days</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2nd floor</td>
<td>70 days</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>3rd floor</td>
<td>80 days</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Services</td>
<td>45 days</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1st floor</td>
<td>20 days</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2nd floor</td>
<td>25 days</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3rd floor</td>
<td>30 days</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Roof</td>
<td>5 days</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Landscaping</td>
<td>30 days</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Landscaping</td>
<td>30 days</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Commissioning</td>
<td>10 days</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Commissioning</td>
<td>10 days</td>
</tr>
</tbody>
</table>
Schedule - Comparison

Construction Start Date: May 25th 2015

Earliest Finish Date: April 4th 2016 – Boat-Wood
Latest Finish Date: April 29th 2016 – Wave-Steel

1 week time contingency included for bad weather
Steel with Variable Air Volume-system

<table>
<thead>
<tr>
<th>Description</th>
<th>Estimated Value</th>
<th>Target Value</th>
<th>Value Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Substructure</td>
<td>$605 000</td>
<td>$594 000</td>
<td>$(11 000)</td>
</tr>
<tr>
<td>B Shell</td>
<td>$1 865 480</td>
<td>$1 926 818</td>
<td>$61 338</td>
</tr>
<tr>
<td>C Interiors</td>
<td>$1 007 200</td>
<td>$1 210 091</td>
<td>$202 891</td>
</tr>
<tr>
<td>D Services</td>
<td>$2 346 211</td>
<td>$2 349 000</td>
<td>$2 789</td>
</tr>
<tr>
<td>E Specialty Construction</td>
<td>$350 000</td>
<td>$493 364</td>
<td>$143 364</td>
</tr>
<tr>
<td>F Building Sitework</td>
<td>$565 000</td>
<td>$640 636</td>
<td>$75 636</td>
</tr>
<tr>
<td>G General Conditions</td>
<td>$1 060 000</td>
<td>$886 091</td>
<td>$(173 909)</td>
</tr>
<tr>
<td>Total</td>
<td>$7 798 891</td>
<td>$8 100 000</td>
<td>$301 109</td>
</tr>
</tbody>
</table>

Wood with Active Chilled Beams

<table>
<thead>
<tr>
<th>Description</th>
<th>Estimated Value</th>
<th>Target Value</th>
<th>Value Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Substructure</td>
<td>$505 000</td>
<td>$594 000</td>
<td>$89 000</td>
</tr>
<tr>
<td>B Shell</td>
<td>$1 970 082</td>
<td>$1 926 818</td>
<td>$(43 264)</td>
</tr>
<tr>
<td>C Interiors</td>
<td>$1 063 200</td>
<td>$1 210 091</td>
<td>$146 891</td>
</tr>
<tr>
<td>D Services</td>
<td>$2 521 211</td>
<td>$2 349 000</td>
<td>$(172 211)</td>
</tr>
<tr>
<td>E Specialty Construction</td>
<td>$350 000</td>
<td>$493 364</td>
<td>$143 364</td>
</tr>
<tr>
<td>F Building Sitework</td>
<td>$565 000</td>
<td>$640 636</td>
<td>$75 636</td>
</tr>
<tr>
<td>G General Conditions</td>
<td>$1 060 000</td>
<td>$886 091</td>
<td>$(173 909)</td>
</tr>
<tr>
<td>Total</td>
<td>$8 034 493</td>
<td>$8 100 000</td>
<td>$65 507</td>
</tr>
</tbody>
</table>
Steel with Variable Air Volume-system

<table>
<thead>
<tr>
<th></th>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Substructure</td>
<td>$ 605 000</td>
<td>$ 594 000</td>
<td>$(11 000)</td>
</tr>
<tr>
<td>B Shell</td>
<td>$ 2 096 700</td>
<td>$ 1 926 818</td>
<td>$(169 882)</td>
</tr>
<tr>
<td>C Interiors</td>
<td>$ 901 900</td>
<td>$ 1 210 091</td>
<td>$ 308 191</td>
</tr>
<tr>
<td>D Services</td>
<td>$ 2 346 211</td>
<td>$ 2 349 000</td>
<td>$(2 789)</td>
</tr>
<tr>
<td>E Specialty Construction</td>
<td>$ 400 000</td>
<td>$ 493 364</td>
<td>$ 93 364</td>
</tr>
<tr>
<td>F Building Sitework</td>
<td>$ 565 000</td>
<td>$ 640 636</td>
<td>$ 75 636</td>
</tr>
<tr>
<td>G General Conditions</td>
<td>$ 1 060 000</td>
<td>$ 886 091</td>
<td>$(173 909)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 7 974 811</td>
<td>$ 8 100 000</td>
<td>$ 125 189</td>
</tr>
</tbody>
</table>

Wood with Active Chilled Beams

<table>
<thead>
<tr>
<th></th>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Substructure</td>
<td>$ 505 000</td>
<td>$ 594 000</td>
<td>$ 89 000</td>
</tr>
<tr>
<td>B Shell</td>
<td>$ 2 009 050</td>
<td>$ 1 926 818</td>
<td>$(82 232)</td>
</tr>
<tr>
<td>C Interiors</td>
<td>$ 1 007 900</td>
<td>$ 1 210 091</td>
<td>$ 202 191</td>
</tr>
<tr>
<td>D Services</td>
<td>$ 2 521 211</td>
<td>$ 2 349 000</td>
<td>$(172 211)</td>
</tr>
<tr>
<td>E Specialty Construction</td>
<td>$ 400 000</td>
<td>$ 493 364</td>
<td>$ 93 364</td>
</tr>
<tr>
<td>F Building Sitework</td>
<td>$ 565 000</td>
<td>$ 640 636</td>
<td>$ 75 636</td>
</tr>
<tr>
<td>G General Conditions</td>
<td>$ 1 060 000</td>
<td>$ 886 091</td>
<td>$(173 909)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 8 068 161</td>
<td>$ 8 100 000</td>
<td>$ 31 839</td>
</tr>
</tbody>
</table>
Target Value – Boat

Steel with Variable Air Volume-system

Wood with Active Chilled Beams
Target Value - Comparison

Construction Start Date: May 25th 2015

Lowest Estimated Value: Boat-Steel

Highest Estimated Value: Wave-Wood
Decision matrix based on schedule and cost

<table>
<thead>
<tr>
<th></th>
<th>Boat – Steel</th>
<th>Boat – Wood</th>
<th>Wave – Steel</th>
<th>Wave - Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cost</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Most beneficial: Boat-Steel

Least beneficial: Wave-Wood
Life Cycle Financial Management
WLCC = Total WLCC in present-value (PV) dollars of a given alternative
I = PV investment costs
Repl = PV capital replacement costs
Res = PV residual value (resale value, salvage value) less disposal costs
E = PV of energy costs
W = PV of water costs
OM&R = PV of non-fuel operating, maintenance and repair costs
O = PV of other costs (e.g., contract costs for ESPCs or UESCs)
S = Salaries
LCFM - Risks

<table>
<thead>
<tr>
<th>Risk Description</th>
<th>Cause</th>
<th>Effect</th>
<th>Probability of Occurrence</th>
<th>Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire regulation issues</td>
<td>visibility of MEP pipes, material</td>
<td>construction delay, increase in costs</td>
<td>1</td>
<td>2,5</td>
</tr>
<tr>
<td>Drainage of excavation</td>
<td>shallow water table</td>
<td>time delay, increase in costs</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>Earth pressure</td>
<td>building is built into hill, constant pressure against construction</td>
<td>higher costs for material</td>
<td>5</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Diagram:
- **Wave 2nd floor**
- **Excavation**
- **Boat**
LCFM – Risk management

V1: Aerogel Panels

- + environmental friendly
- + translucent
- + Increase thermal insulation
- + Improve sound insulation
- + Gain LEED® points
- + Reduces energy consumption
 (R8 per inch)
- - F60
- - expensive

Visibility of MEP Shafts

V2: Fireproof Glazing

+ F90
+ prefabrication
+ cheap
- No translucent
- No LEED® points
LCFM – Why we need it!?

Based on our design:

<table>
<thead>
<tr>
<th></th>
<th>Boat _ Steel</th>
<th>Boat _ Wood</th>
<th>Wave _ Steel</th>
<th>Wave _ Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction costs</td>
<td>20</td>
<td>$7,971,000</td>
<td>$8,034,000</td>
<td>$7,975,000</td>
</tr>
<tr>
<td>O & M costs</td>
<td>75</td>
<td>$23,913,000</td>
<td>$24,102,000</td>
<td>$23,925,000</td>
</tr>
</tbody>
</table>

Based on assumptions found in current literature

Source: APOGEE (2006)
<table>
<thead>
<tr>
<th></th>
<th>per sft effective floor space</th>
<th>Boat Steel</th>
<th>Boat Wood</th>
<th>Wave Steel</th>
<th>Wave Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>sft</td>
<td>34.620</td>
<td>34.620</td>
<td>30.906</td>
<td>30.906</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>$9 - $32.5*</td>
<td>$300.000 – $1.000.000</td>
<td>$300.000 – $1.000.000</td>
<td>$270.000 – $1.000.000</td>
<td>$270.000 – $1.000.000</td>
</tr>
<tr>
<td>Facilities management</td>
<td>$10 - $35*</td>
<td>$350.000 – $1.200.000</td>
<td>$350.000 – $1.200.000</td>
<td>$300.000 – $1.080.000</td>
<td>$300.000 – $1.080.000</td>
</tr>
<tr>
<td>Energy</td>
<td>$2.10*</td>
<td>$70.000</td>
<td>$70.000</td>
<td>$60.000</td>
<td>$60.000</td>
</tr>
</tbody>
</table>

Based on assumptions found in current literature
LCFM – Energy Costs

Electricity Use

<table>
<thead>
<tr>
<th>Component</th>
<th>Boat</th>
<th>Boat Savings</th>
<th>Wave</th>
<th>Wave Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>100%</td>
<td>$70,000</td>
<td>$60,000</td>
<td>~ $49,000</td>
</tr>
<tr>
<td>Lighting</td>
<td>32%</td>
<td>$22,400</td>
<td>$19,200</td>
<td>$8,000 (~40%)</td>
</tr>
<tr>
<td>Ventilation</td>
<td>23%</td>
<td>$16,100</td>
<td>$13,800</td>
<td>$1,500 (~10%)</td>
</tr>
<tr>
<td>Cooling</td>
<td>18%</td>
<td>$12,600</td>
<td>$10,800</td>
<td>$1,000 (~10%)</td>
</tr>
</tbody>
</table>

Based on assumptions found in current literature.
LCFM—Operation & Maintainance

HVAC Systems

- Energy Costs
- Maintainence
- Operation
- HVAC first cost

<table>
<thead>
<tr>
<th>Item</th>
<th>VAV</th>
<th>ACB</th>
<th>Net for ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU</td>
<td>Large</td>
<td>Small</td>
<td>+</td>
</tr>
<tr>
<td>Ductwork</td>
<td>Large</td>
<td>Small</td>
<td>+</td>
</tr>
<tr>
<td>Risers</td>
<td>Large</td>
<td>Small</td>
<td>+</td>
</tr>
<tr>
<td>Ceiling Space</td>
<td>Large</td>
<td>Small</td>
<td>+</td>
</tr>
<tr>
<td>Pipework</td>
<td>Small</td>
<td>Large</td>
<td>-</td>
</tr>
<tr>
<td>Fan Energy</td>
<td>High</td>
<td>Low</td>
<td>+</td>
</tr>
<tr>
<td>Pump Energy</td>
<td>Low</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>Tenant Satisfaction</td>
<td>Low</td>
<td>High</td>
<td>+</td>
</tr>
<tr>
<td>Air Side System Cost</td>
<td>Low</td>
<td>High</td>
<td>+</td>
</tr>
<tr>
<td>Water Side System Cost</td>
<td>Low</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>Individual Control</td>
<td>Low</td>
<td>High</td>
<td>+</td>
</tr>
<tr>
<td>Thermal Comfort</td>
<td>Low</td>
<td>High</td>
<td>+</td>
</tr>
<tr>
<td>Generated Noise</td>
<td>High</td>
<td>Low</td>
<td>+</td>
</tr>
<tr>
<td>Maintenance</td>
<td>High</td>
<td>Low</td>
<td>+</td>
</tr>
<tr>
<td>Risk of Condensation</td>
<td>Low</td>
<td>High</td>
<td>-</td>
</tr>
</tbody>
</table>
Based on current design decisions
Mens sana in corpore sano

Urban roof gardening / creating new habitats

Workspace with natural daylight and healthy material
<table>
<thead>
<tr>
<th>Economic</th>
<th>Construction</th>
<th>boat</th>
<th>wood</th>
<th>steel</th>
<th>wood</th>
<th>wave</th>
<th>steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>building costs</td>
<td>78,35</td>
<td>75,54</td>
<td>73,57</td>
<td>70,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prefabrication</td>
<td>27,00</td>
<td>67</td>
<td>85</td>
<td>67</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>short schedule</td>
<td>37,00</td>
<td>86</td>
<td>63</td>
<td>86</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>room program</td>
<td>36,00</td>
<td>87</td>
<td>57</td>
<td>86</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>flexibility</td>
<td>33,30</td>
<td>82,465</td>
<td>80,985</td>
<td>78,015</td>
<td>76,815</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>operation costs</td>
<td>50,00</td>
<td>83,25</td>
<td>81,76</td>
<td>80,01</td>
<td>78,38</td>
<td></td>
</tr>
</tbody>
</table>

Collaboration

	collaboration space	15,00	82	82	80	80
	atrium	18,00	74	74	76	76
	connection between interior & exterior	25,00	80	77	71	70
	connection to the hill	15,00	78	75	73	70
	inside experience	20,00	91	90	83	83
	representation of University	7,00	88	87	72	71
TEAM ATLANTIC proudly presents...

BOAT WOOD

Thanks to all the great Mentors and their helpful and constructive feedback
Team Process
8 STRANGERS
GETTING TO KNOW EACH OTHER
Team Process Development

PROFESSION
ATLANTIC

TEAM ATLANTIC
8 FRIENDS WORKING TOGETHER