Winter Presentation
March 15th, 2013

Ridge Team 2013
"We are the Ridge Team, which, from now on, stands for awesome."
Ridge Team 2013

Owners: Sinan M., Anirudh R., & Maria S.

Chico, CA
Laura M. (CM)

Stanford, CA
Stephanie C. (SE)
Ramon I. (CM)

Germany
LCFM Consultants:
Stefan E. (LCFM)
Toni G. (LCFM)

Puerto Rico
Pablo C. (A)
Jorge S. (A)

Denmark
Kleanthis C. (MEP)

Slovenia
Stefan M. (SE)
Project Overview
SITE UNIVERSITY OF NEVADA, RENO
Climate Challenges

- Sunshine: 3650 hr/yr
- Precipitation: 7.30 inches/yr

Average humidity: 55%

- Heating degrees: 5680 hr/yr
- Cooling degrees: 508 hr/yr
Available Resources

Available in Campus
- Natural Gas for heating and DHW
- Chilled water

Alternative sources
- Ground source heat pump for heating/cooling
- Hybrid Systems

Renewable energy potential
- Photovoltaics
- Wind turbine

Harvest Rainwater
~3.6 gal/sf/yr
1. Reduce energy consumption & use renewable energy

2. Minimize evening building usage

3. Maximize building utilization

4. Winter space temperatures: 68F
 Summer space temperatures: 78F
Big Idea

Industrial Evolution

Architecture
Structure
MEP
Construction

Technology
- Transformation
- Convergent
- Production
- Divergent

Creativity

Flexible Spaces
Rapid Prototyping Labs
Big Idea
Transparent Engineering Building (TEB)

1. Steel
2. Concrete
Orientation

<table>
<thead>
<tr>
<th></th>
<th>Total EUI (kBtu/sf/yr)</th>
<th>Life Cycle Energy Cost ($)</th>
<th>Net CO₂ (tn/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>640,000</td>
<td>167</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>600,000</td>
<td>140</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>620,000</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>610,000</td>
<td>144</td>
</tr>
</tbody>
</table>
Site/ TEB Concept
Site/ TEB Concept
Level -1 (Basement)

- Rapid Prototyping Labs
- Faculty Offices
- Auditorium
- Bathroom, cores, stairs, elevator...
- Student Offices & area
- Seminar Rooms

Emergency Exit
Entrance
Level -1 (Basement)
Level 0 (Campus Entrance)
Level 0 (Campus Entrance)
Level 1

- Small Classrooms
- Large Classrooms
- Faculty Offices
- Bathroom, cores, stairs, elevator...
- Student Offices & area
- Faculty Lounge

Architecture
Structure
MEP
Construction
Level 2

- Green: Large Classrooms
- Blue: Faculty Offices
- Tan: Bathroom, cores, stairs, elevator...
- Pink: Student Offices & area
- Gray: Faculty Lounge
Level 2
Section aa
Section cc
Dynamic Façade System

Campus Entrance / East Façade / Privacy Glass
Dynamic Façade System

West Façade - Roller Blinds

- Simple device
- Keeps out glare and UV rays
- Easy to operate

South Façade / Parking Entrance
Load Calculation

<table>
<thead>
<tr>
<th></th>
<th>Steel</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Dead Load</td>
<td>90 psf</td>
<td>180 psf</td>
</tr>
<tr>
<td>Roof Live Load</td>
<td>20 psf</td>
<td>--</td>
</tr>
<tr>
<td>Roof Snow Load</td>
<td>40 psf</td>
<td>--</td>
</tr>
<tr>
<td>Other Floor Dead Loads</td>
<td>74 psf</td>
<td>150 psf</td>
</tr>
<tr>
<td>Other Floor Live Loads</td>
<td>60-100 psf</td>
<td>--</td>
</tr>
<tr>
<td>Wind Shear</td>
<td>100 mph => 1.5 kips / foot</td>
<td>--</td>
</tr>
<tr>
<td>Earthquake Shear</td>
<td>Sa = 0.4g => 680 kips</td>
<td>870 k</td>
</tr>
<tr>
<td>Retaining-soil Shear</td>
<td>4.7 kips / foot</td>
<td>--</td>
</tr>
</tbody>
</table>

-- || -- means same load

Per International Building Code (IBC) 2006 with amendments provided by the city of Reno, Nevada
Soil Conditions

- **Slope:** 7' - 14' above volcanic rock
- 110000 cf excavation

<table>
<thead>
<tr>
<th>Depth of Excavation</th>
<th>Soil Type</th>
<th>Thickness</th>
<th>Bearing Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 inches (0 ft.)</td>
<td>Stony Sandy Loam and Heavy Loam</td>
<td>19 inches (1.58 ft.)</td>
<td>1,500 psf</td>
</tr>
<tr>
<td>19 inches (1.58 ft.)</td>
<td>Sandy Clay Loam</td>
<td>10 inches (0.83 ft.)</td>
<td>1,500 psf</td>
</tr>
<tr>
<td>29 inches (2.42 ft.)</td>
<td>Clay and Clay Loam</td>
<td>27 inches (2.25 ft.)</td>
<td>1,500 psf</td>
</tr>
<tr>
<td>56 inches (4.67 ft.)</td>
<td>Very Gravelly Sandy Loam and Very Gravelly Loam</td>
<td>28 inches (2.33 ft.)</td>
<td>5,000 psf</td>
</tr>
<tr>
<td>84 inches (7 ft.)</td>
<td>Volcanic Rock</td>
<td>Unknown</td>
<td>8,000 psf</td>
</tr>
</tbody>
</table>

Figure from Ridge 2012
• 6'' - 1' slab & 1' - 2' pad footings
• Idea: to extend horizontally outside the building perimeter for 4' to stabilize
Retaining Walls

- height: 10' - 14'
- Idea: drain the water and collect it
Steel: Level -1

- **BLUE** - Retaining Wall
- **GREEN** – W14x43 Girders
- **ORANGE** – W8x31 Beams @ 4' Spacing
- **RED** – W14x61 Columns
- **PURPLE** – W14x61 Slanted Columns
- **NAVY** – W12x40 Columns
- **Grey** - Slab Openings

Composite Slab:
6” Concrete on Steel Deck
Steel: Level 0

Architecture
Structure
MEP
CM

GREEN —
W14x43 Girders
BLUE —
W14x74 Girders
ORANGE —
W8x31 Beams @ 4’ Spacing
RED —
W14x61 Columns
PURPLE —
W14x61 Slanted Columns
NAVY —
W12x40 Columns

- Slab Openings

Composite Slab:
6” Concrete on Steel Deck
Auditorium Slab:
Prefab PT 2’ Slab
Steel : Level 1

GREEN – W14x43 Girders
ORANGE – W8x31 Beams @ 4’ Spacing
BLUE – W8x28 Beams @ 6’ Spacing
RED – W14x61 Columns
PURPLE – W14x61 Slanted Columns
NAVY – W12x40 Columns

Slab Openings

Composite Slab: 6” Concrete on Steel Deck
Steel : Level 2 (Roof)

- **GREEN** – W14x43 Girders
- **ORANGE** – W8x31 Beams @ 4’ Spacing
- **BLUE** – W8x28 Beams @ 6’ Spacing
- **RED** – W14x61 Columns
- **PURPLE** – W14x61 Slanted Columns
- **NAVY** – W12x40 Columns
- Slab Openings

Composite Slab:
6” Concrete on Steel Deck
Lateral Systems

Challenge: Torsion due to irregularity

Cross bracing will be exposed, so aesthetics will also play a role in selection.

RED - Location of cross bracing shown on Level 0 plan
Floor Sandwich: Steel

Total height: 15 inch Distribution

<table>
<thead>
<tr>
<th>Component</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite slab</td>
<td>6 inch</td>
</tr>
<tr>
<td>Steel beams</td>
<td>8 inch</td>
</tr>
<tr>
<td>ducts & instal.</td>
<td>8 inch</td>
</tr>
<tr>
<td>Ceiling panels</td>
<td>1 inch</td>
</tr>
<tr>
<td>Total:</td>
<td>15 inch</td>
</tr>
<tr>
<td>Girders</td>
<td>13 inch</td>
</tr>
</tbody>
</table>

Overhead

- Deck
- Distribution ducts
- Suspended ceiling
- Corridor
- Room
- Main Ducts
- Supply Air
- Return Air
Load Paths
Concrete: Level -1

Architecture
Structure
MEP
CM

BLUE - Retaining Wall
ORANGE - 2’x2’ Columns
GREEN - 1.5’x2’ Beams
RED - Shear Walls & Bracing
- Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
Concrete: Level 0

Orange –
2’x2’ Columns

Green –
1.5’x2’ Beams

Red –
Shear Walls & Bracing

- Slab Openings

Floor Slab:
10” Reinforced Concrete Slab

Auditorium Slab:
Prefab PT 2’ Slab
Concrete: Level 1

Architecture Structure

MEP CM

ORANGE –
2’x2’ Columns

GREEN –
1.5’x2’ Beams

RED –
Shear Walls & Bracing

Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
Concrete: Level 2 (Roof)

Orange – 2’x2’ Columns
Green – 1.5’x2’ Beams
Red – Shear Walls & Bracing

- Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
Floor Sandwich: Concrete

Total height: 20 inch

<table>
<thead>
<tr>
<th>Component</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor finish</td>
<td>1 inch</td>
</tr>
<tr>
<td>Plenum</td>
<td>4 inch</td>
</tr>
<tr>
<td>Reinforced concrete slab</td>
<td>10 inch</td>
</tr>
<tr>
<td>Plenum</td>
<td>4 inch</td>
</tr>
<tr>
<td>Ceiling panels</td>
<td>1 inch</td>
</tr>
<tr>
<td>Total</td>
<td>20 inch</td>
</tr>
<tr>
<td>RC beam</td>
<td>9 inch</td>
</tr>
</tbody>
</table>
HVAC Requirements

Heating Set Points: 68 F
Outdoor temperature: 19.9 F

Cooling Set Points: 78 F
Outdoor temperature: 92.2 F

Indoor Relative Humidity: 50%
Ground Source Heat Pump
- Energy efficient with low GHG emissions
- High capital cost and low operational costs (payback ≥5 years, Commercial Buildings Tax Deduction)

Hybrid Systems

Dual Source:
- Decrease cost & efficiency

Solar Thermal:
- Dump excess solar energy to the ground, decrease cost and groundwater well depth ~11%

System ~80 tons
- Boreholes ~300 ft
- Water-to-water system
- Seasonal heat/cold storage
- Energy recovery savings up 9%
Air Distribution

Mechanical Ventilation

- Overhead air distribution - VAV system
- Underfloor air distribution
- Displacement Ventilation

Natural ventilation

- Stack ventilation

Control systems (of occupancy, CO2 concentration, weather provision)
UFAD & DV

UFAD
- Improved thermal comfort
- Improved ventilation efficiency and IAQ
- Reduce energy use
- Fan energy savings
- Reduced electrical demand

UFAD/DV - System
- 4” pressurized supply & return plenum
- Passive floor mounted diffusers
- Dehumidification with portion of return air
- Passive VAV cooling and fin tube heating on perimeter
Vasari Analysis

<table>
<thead>
<tr>
<th>Glazing</th>
<th>Natural Gas*</th>
<th>GSHP**</th>
<th>UFAD***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>80%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>kWh/sf/yr</td>
<td>kWh/sf/yr</td>
<td>kWh/sf/yr</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>kBtu/sf/yr</td>
<td>kBtu/sf/yr</td>
<td>kBtu/sf/yr</td>
</tr>
<tr>
<td>HVAC</td>
<td>380,000</td>
<td>400,000</td>
<td>430,000</td>
</tr>
<tr>
<td></td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>Lighting</td>
<td>470,000</td>
<td>470,000</td>
<td>320,000</td>
</tr>
<tr>
<td></td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.C. Energy</td>
<td>$560,000</td>
<td>$600,000</td>
<td>$570,000</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 emissions</td>
<td>107</td>
<td>163</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>tons/yr</td>
<td>tons/yr</td>
<td>tons/yr</td>
</tr>
</tbody>
</table>

* Furnace with gas heat, temperature economizer, DHW unit
** HP system, temperature economizer, DHW unit
*** VAV, Gas fired HW boiler, VV HW pump, HW coil

- **Fuel**: 27 kBtu/sf/yr
- **Electricity**: 9 kWh/sf/yr

- **CO2 emissions**: 107 tons/yr
Duct Network
Natural Ventilation

- Natural stack ventilation in corridor, atriums and perimeter
- Low energy fan during winter
Site Logistics
Cost Estimate

<table>
<thead>
<tr>
<th>Concept</th>
<th>Estimate</th>
<th>Difference From Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>L - Steel</td>
<td>$8,313,600</td>
<td>$(13,600)</td>
</tr>
<tr>
<td>L - Concrete</td>
<td>$8,296,800</td>
<td>$3,200</td>
</tr>
</tbody>
</table>
Cost distribution

- **G Building Sitework** $75,000 (1%)
- **H General Conditions** $1,385,600 (17%)
- **F Specialty Construction** $- 0% (0%)
- **E Equipment and Furnishing** $- 0% (0%)
- **D Services** $2,895,000 (35%)
- **A Substructure** $366,000 (4%)
- **B Shell** $2,351,000 (28%)
- **C Interiors** $1,241,000 (15%)
Double Diamond (DD)
1. Central (C)
2. X - Lattice (X)
Orientation

<table>
<thead>
<tr>
<th></th>
<th>Total EUI (kBtu/sf/yr)</th>
<th>Life Cycle Energy Cost ($)</th>
<th>Net CO₂ (tn/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>610,000</td>
<td>235</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>650,000</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>615,000</td>
<td>145</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>630,000</td>
<td>245</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>630,000</td>
<td>155</td>
</tr>
</tbody>
</table>
Site/Second Concept
Site/Second Concept
Level -1 (Basement)

- Core
- Prototyping Lab
- Auditorium
- Faculty Offices
- Collaboration Space
Level -1 (Basement)
Level 0 - (Campus Entrance)
Level 0 - (Campus Entrance)
Level 1

Core
Large Classrooms
Small Classrooms
Level 1
Level 2

- Core
- Faculty Lounge
- Faculty Offices
- Administration
- Assistants Offices
Level 2
Flexible Spaces
Section aa

Architecture
Structure
MEP
Construction
Section bb

Architecture
Structure
MEP
Construction

Summer
Winter
Section cc
3d views

East Façade/
 DD Central

South Façade/
 DD Central
3d views

East Facade/
X Lattice

South Façade/
X Lattice
Atrium Design Evolution

Rectangle
+ Easier to fit program
- Concern about shearing along weak axis

Circle
+ Stronger in the weak axis
- More challenging programmatically

Cylinder
+ Simpler form while maintaining circular shape

Hyperboloid
+ Interaction between A + SE
+ Interesting, iconic form
+ Added strength in multiple directions
- More challenging/costly to design & build
- Does not fit architectural scheme well
Hyperboloid Exploration
Central: Level -1

Orange –
1.5’x1.5’ Columns
Green –
4’x1’ Columns
Navy –
1.5’ x2’ Beams
Blue –
Tension Ring
Red –
Shear Walls
Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
Central: Level 0

ORANGE –
1.5’x1.5’ Columns

GREEN –
4’x1’ Columns

NAVY –
1.5’ x2’ Beams

BLUE –
Tension Ring

RED –
Shear Walls

- Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
Central: Level 1

Orange – 1.5’x1.5’ Columns
Green – 4’x1’ Columns
Navy – 1.5’ x2’ Beams
Blue – Tension Ring
Red – Shear Walls

Slab Openings

Floor Slab: 10” Reinforced Concrete Slab
Central: Level 2 (Roof)

Structure
- **ORANGE** – 1.5’x1.5’ Columns
- **GREEN** – 4’x1’ Columns
- **NAVY** – 1.5’ x2’ Beams
- **BLUE** – Tension Ring
- **RED** – Shear Walls
 - Slab Openings

Floor Slab:
- 10” Reinforced Concrete Slab
X-Lattice: Level -1

Architecture Structure

MEP CM

Orange –
1.5’x1.5’ Columns

Navy –
1.5’ x2’ Beams

Blue –
Tension Ring

Red –
X-Lattice Wall

Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
X-Lattice: Level 0

- Architecture
 - Structure
 - MEP
 - CM

ORANGE –
1.5’x1.5’ Columns

NAVY –
1.5’ x2’ Beams

BLUE –
Tension Ring

RED –
X-Lattice Wall

- Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
X-Lattice: Level 1

Orange –
1.5’ x 1.5’ Columns

Navy –
1.5’ x 2’ Beams

Blue –
Tension Ring

Red –
X-Lattice Wall

Slab Openings

Floor Slab:
10” Reinforced Concrete Slab
X-Lattice: Level 2 (Roof)

- **ORANGE** – 1.5’x1.5’ Columns
- **NAVY** – 1.5’ x2’ Beams
- **BLUE** – Tension Ring
- **RED** – X-Lattice Wall
- Slab Openings

Floor Slab: 10” Reinforced Concrete Slab
X Lattice Wall

Can also help carry loads from cantilever
ConXTech

Architecture
Structure
MEP
Construction
Vasari Analysis

<table>
<thead>
<tr>
<th>Input/Output</th>
<th>Natural Gas*</th>
<th>GSHP**</th>
<th>UFAD***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glazing</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Fuel</td>
<td>kWt/sf/yr</td>
<td>kWt/sf/yr</td>
<td>kWt/sf/yr</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh/sf/yr</td>
<td>kWh/sf/yr</td>
<td>kWh/sf/yr</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>HVAC</td>
<td>kWh/yr</td>
<td>kWh/yr</td>
<td>kWh/yr</td>
</tr>
<tr>
<td>380,000</td>
<td>420,000</td>
<td>440,000</td>
<td>480,000</td>
</tr>
<tr>
<td>420,000</td>
<td>440,000</td>
<td>480,000</td>
<td>330,000</td>
</tr>
<tr>
<td>440,000</td>
<td>480,000</td>
<td>330,000</td>
<td>350,000</td>
</tr>
<tr>
<td>Lighting Equipment</td>
<td>$570,000</td>
<td>$610,000</td>
<td>$580,000</td>
</tr>
<tr>
<td>109</td>
<td>172</td>
<td>132</td>
<td>192</td>
</tr>
<tr>
<td>CO2 emissions</td>
<td>tons/yr</td>
<td>tons/yr</td>
<td>tons/yr</td>
</tr>
<tr>
<td>109</td>
<td>172</td>
<td>132</td>
<td>192</td>
</tr>
<tr>
<td>119</td>
<td>172</td>
<td>132</td>
<td>192</td>
</tr>
<tr>
<td>L.C. Energy Cost</td>
<td>$570,000</td>
<td>$610,000</td>
<td>$580,000</td>
</tr>
<tr>
<td>94</td>
<td>181</td>
<td>94</td>
<td>181</td>
</tr>
<tr>
<td>Cost</td>
<td>$570,000</td>
<td>$610,000</td>
<td>$580,000</td>
</tr>
<tr>
<td>CO2 emissions</td>
<td>tons/yr</td>
<td>tons/yr</td>
<td>tons/yr</td>
</tr>
<tr>
<td>94</td>
<td>181</td>
<td>94</td>
<td>181</td>
</tr>
<tr>
<td>94</td>
<td>181</td>
<td>94</td>
<td>181</td>
</tr>
</tbody>
</table>

*Furnace with gas heat, temperature economizer, DHW unit
**HP system, temperature economizer, DHW unit
***VAV, Gas fired HW boiler, VV HW pump, HW coil
Duct Network

- DV
- Return
- Overhead
Natural Ventilation

- Natural stack ventilation in corridor, atriums and perimeter
- Low energy fan during winter
Double Diamond Site Logistics
Preliminary Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitework</td>
<td>35 days</td>
<td>Wed 9/30/15</td>
<td>Tue 11/17/15</td>
</tr>
<tr>
<td>Substructure</td>
<td>50 days</td>
<td>Tue 10/20/15</td>
<td>Mon 12/28/15</td>
</tr>
<tr>
<td>Mat Slab</td>
<td>5 days</td>
<td>Wed 11/18/15</td>
<td>Tue 11/24/15</td>
</tr>
<tr>
<td>Pile Caps</td>
<td>5 days</td>
<td>Wed 10/21/15</td>
<td>Tue 10/27/15</td>
</tr>
<tr>
<td>Grade Beams</td>
<td>5 days</td>
<td>Wed 10/21/15</td>
<td>Tue 10/27/15</td>
</tr>
<tr>
<td>Slab</td>
<td>5 days</td>
<td>Wed 10/28/15</td>
<td>Tue 11/3/15</td>
</tr>
<tr>
<td>Level -1</td>
<td>10 days</td>
<td>Tue 11/3/15</td>
<td>Mon 11/16/15</td>
</tr>
<tr>
<td>Level 0</td>
<td>10 days</td>
<td>Mon 11/9/15</td>
<td>Fri 11/20/15</td>
</tr>
<tr>
<td>Level 1</td>
<td>10 days</td>
<td>Fri 11/20/15</td>
<td>Thu 12/3/15</td>
</tr>
<tr>
<td>Level 2</td>
<td>10 days</td>
<td>Thu 12/3/15</td>
<td>Wed 12/16/15</td>
</tr>
<tr>
<td>Shell</td>
<td>60 days</td>
<td>Thu 12/17/15</td>
<td>Wed 3/9/16</td>
</tr>
<tr>
<td>Level -1</td>
<td>15 days</td>
<td>Thu 12/17/15</td>
<td>Wed 1/6/16</td>
</tr>
<tr>
<td>Level 0</td>
<td>15 days</td>
<td>Wed 1/6/16</td>
<td>Tue 1/26/16</td>
</tr>
<tr>
<td>Level 1</td>
<td>15 days</td>
<td>Mon 1/11/16</td>
<td>Fri 1/29/16</td>
</tr>
<tr>
<td>Level 2</td>
<td>15 days</td>
<td>Tue 1/26/16</td>
<td>Mon 2/15/16</td>
</tr>
<tr>
<td>Interiors</td>
<td>50 days</td>
<td>Fri 2/12/16</td>
<td>Thu 4/21/16</td>
</tr>
<tr>
<td>Interior Construction</td>
<td>65 days</td>
<td>Fri 2/12/16</td>
<td>Thu 5/12/16</td>
</tr>
<tr>
<td>Stairs</td>
<td>20 days</td>
<td>Tue 2/16/16</td>
<td>Mon 3/14/16</td>
</tr>
<tr>
<td>Services</td>
<td>40 days</td>
<td>Fri 3/25/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>Elevator</td>
<td>5 days</td>
<td>Fri 5/13/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>Plumbing</td>
<td>40 days</td>
<td>Fri 3/25/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>HVAC</td>
<td>40 days</td>
<td>Fri 3/25/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>40 days</td>
<td>Fri 3/25/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>Electrical</td>
<td>40 days</td>
<td>Fri 3/25/16</td>
<td>Thu 5/19/16</td>
</tr>
<tr>
<td>Site Improvements</td>
<td>25 days</td>
<td>Mon 6/27/16</td>
<td>Fri 7/29/16</td>
</tr>
</tbody>
</table>
Cost Estimate

<table>
<thead>
<tr>
<th>Concept</th>
<th>Estimate</th>
<th>Difference From Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Concrete</td>
<td>$8,744,400</td>
<td>$ (444,400)</td>
</tr>
<tr>
<td>D-Steel</td>
<td>$9,309,600</td>
<td>$ (1,009,600)</td>
</tr>
</tbody>
</table>

Pricier than L due to larger Floor and Facade SF
Cost distribution

- **D Services**: $2,895,000 (31%)
- **A Substructure**: $366,000 (4%)
- **H General Conditions**: $1,551,600 (17%)
- **B Shell**: $3,181,000 (34%)
- **C Interiors**: $1,241,000 (13%)
- **E Equipment and Furnishing**: $- (0%)
- **F Specialty Construction**: $- (0%)
- **G Building Sitework**: $75,000 (1%)
TVD - Concrete

TVD - TARGETS BY CLUSTER Steel

- TARGET VALUE
- ESTIMATED VALUE
- VALUE DELTA

- A Substructure
- B Shell
- C Interiors
- D Services
- E Equipment and Furnishing
- F Specialty Construction
- G Building Sitework
- H General Conditions
Leapfrog Sustainability & Whole Life Cost Challenges
Innovation in Concrete

Use of translucent concrete to allow light in restrooms while maintaining structural integrity of shear walls (L-shape Concrete option)
Structural Health Monitoring

A nervous system for the building, with sensors detecting anomalous strains.

High initial cost --> lower OM cost, better safety, especially after EQ event.

Cost: ~$40/ft²
Smart Operation

- Room controllers with batteryless sensors
- Control of HVAC and lighting
- Thermostats
- Window contacts
- Humidity sensors
- Occupancy sensors
- CO2 sensors
Building Integrated PV
30kW

Mounted On: Roof 30°
Area: 2700 sf
Annual Energy Yield: 51.7 MWh/year
Gross Evaluation: 240,000 $

Mounted On: Atrium 30°
Area: 5400 sf
Annual Energy Yield: 51.7 MWh/year
Gross Evaluation: 290,000 $

Mounted On: Façade 30°
Area: 2700 sf
Annual Energy Yield: 51.7 MWh/year
Gross Evaluation: 260,000 $

Mounted On: BIPV
Area: 2700 sf
Annual Energy Yield: 33.4 MWh/year
Gross Evaluation: 250,000 $
Rainwater Harvesting

- 36000 gal/year rainwater
- Snow melting
- Drain groundwater

Use for:
- Toilet flushing
- Plants irrigation
- Maintenance/cleaning
Building Integrated W/T 18kW

- Operate at low wind speed ~5 mph and up to 120 mph
- Take advantage of ‘chimney effect’
- Low Noise levels

18 W/T Mounted On Roof
Energy produced: 19.4 MWh/year
Gross evaluation: 130,000 $
Electricity Produced: 17,500 $/year
Real Time Positioning

http://www.ekahau.com/products/real-time-location-system/vision.html
Sustainable Target Value

L-Concrete

DD-Central

L-Steel

DD-X
Sustainable Target Value

L-Concrete
*1.013 mtCO2e $31,000

L-Steel
*993 mtCO2e $30,000

DD-Cylinder
*1065 mtCO2e $32,000

DD-X
*934 mtCO2e $28,000
Sustainability Goals & LEED

Kickoff
-shoot for "net zero" energy
-don't design explicitly for the LEED checklist

Winter Quarter
- Incorporation of passive solar heating & lighting
- Decision to use rainwater harvesting and PV
- Exploration of GSHP & wind turbines

Looking Ahead to Spring Quarter
- Evaluation of design under LEED+ criteria
- Continue to design for sustainability, including Energy & Atmosphere, Indoor Environmental Quality, etc.
Decision Process
Decision Matrix

Framework provided by LCFM consultants

1. Team & owners add/modify criteria such as:
 - cost
 - sustainability
 - constructability
 - flexibility
 - innovation
 - efficiency
 - concept clarity

2. Owners choose weight distribution

3. Team rates concepts

4. Scores are calculated
Team's Recommendation to Owners!
LCFM Consulting in Spring

Communicate and consult

1. Establish the context
 - Criteria
 - Stakeholders
 - Alternatives
 - Define key elements

2. Identify the risk
 - What can happen?
 - How can it happen?

3. Analyse the risk
 - Responsibility
 - Costs
 - Duration

4. Evaluate the risk
 - Assessment
 - Evaluation
 - Risk Map
 - Time table

5. Treat the risk
 - Management
 - Identify options
 - Controlling

Monitor and review
Team Process
Modes of Communication

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text, images, videos, links to other websites, etc.</td>
<td>Facebook</td>
</tr>
<tr>
<td>Instant messaging</td>
<td>Facebook</td>
</tr>
<tr>
<td>Voice</td>
<td>GoToMeeting</td>
</tr>
<tr>
<td>File Sharing</td>
<td>Google Drive</td>
</tr>
</tbody>
</table>
Team Design Process

Sketching while on Skype or Gotomeeting to share ideas or receive instant feedback
Example of Interdisciplinary Collaboration

SE Meetings by Week

- **Hours**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18

- **Week Starting on**
 - 21-Jan
 - 28-Jan
 - 4-Feb
 - 11-Feb
 - 18-Feb
 - 25-Feb
 - 4-Mar
 - 11-Mar

- **Legend**
 - w/ CM
 - w/ MEP
 - w/ A+MEP
 - w/ A
 - SE Only
 - Team
 - Class

Architecture
Structure
MEP
Construction
Thank You!

Your time and feedback are greatly appreciated!