Team River 2021

WINTER PRESENTATION
INTRODUCTION
PROJECT SITE

SYMBIOSIS

NEXT YEAR’S SPRING

FINAL DECISION

CONTENT
INTRODUCTION
Team River

Kaitlin | MEP
Stanford University
Breakfast Burritos

Sarah | CM
UW Madison

Maša | SE
University of Ljubljana
Maqlouba

Nils | A
Aalborg University

Alex | CM
DTU
Plaice

Clemens | LCFM
Bauhaus University
Wraps

Lisa | SE
ETH Zurich
Spaghetti Carbonara

A
Moussaka

4
Plaice
Gecknödel
Our Owners

Renate Fruchter
Founding Director
California, USA

Ola Sobczyk
Architect
London, UK

Vikash Kr Soni
MEP Engineer
Copenhagen, Denmark

Jacob Olsen
Structural Engineer
Copenhagen, Denmark

Eeshan Shah
Construction Manager
Manchester, UK

Tobias Oberlein
LCFM
Berlin, Germany
Location
Location
I want to learn, make friends and partyyyy!

I need a quiet workspace to plan my lectures.

It would be great to find somewhere to sit while walking my dog.

I love visiting culturally rich cities.
Site Conditions

- UNESCO World Heritage City
- Narrow access roads
- Risk of flooding
- Shallow water table
- Snow loads in winter
- Wind from south, west
- Oriented for passive solar
# Team Targets

## Design
- Fully integrated big idea
- Site-specific design
- Natural solutions
- Innovative, modern systems
- Load reduction
- Bright and slender structure

## User Experience
- User friendly
- Daylight
- New ways of using building
- Human space
- Visible structural elements
- User comfort

## Construction and Use
- Happy owners
- Build to last
- Resilience
- Consistent component sizes
- On budget
- Quick construction

## Challenges
- Parametric design
- Sustainability and equity
- Buildings as products
SYMBIOSIS
SYMBIOSIS

Any relationship or interaction between two dissimilar organisms
Mutualism
Both organisms benefit

Commensalism
One benefits; the other is unaffected

Parasitism
One benefits; the other is harmed
Goal with Symbiosis

- Strive for Mutualism
- Accept Communalism
- Work against parasitism

Avoid
Initial sketches | Incorporating mutualism
Why this mass

Footprint
Follow hard restrictions
Use slope
Focus on auditorium
Clear cores
Trapeze-like auditorium
Concept Evolution

Feb 9 | First concept

Feb 15 | Second concepts

Feb 19 | Critical crit session

Feb 26 | Third concept

Mar 19 | Proposed concepts

Grove

Mesh

Meanwhile | Work in progress
# MEP Design for Mutualism

## Building and Occupants
- **Floor area**: 2944 m²
- **Peak occupancy**: 275

## User Comfort
- **Indoor temp**: 20-23°C
- **Humidity**: 35-45% RH
- **Ventilation**: DGNB Cat. II

## Resource Efficiency
- **Energy budget**: 111,872 kWh
- **Minimize water + natural gas use**
MEP Concept Evolution

Feb 9 - Peer Review
- Natural ventilation
- Variable air volume (VAV)
- Radiant floors

Primary system?

Feb 19 - Crit
- Boiler / chiller
- Zoning

Efficiency?

Feb-Mar - mentorship and refining

Primary
- Ground source heat pump
- Dedicated outdoor air system

Secondary
- Displacement ventilation
- Fan coil cooling
MEP Mutualism via Load Reduction

- Initial Massing
  - Late Jan: High R windows and curtain walls

- Building orientation
  - Mid Jan

- Tree location
  - Early Feb

- Window placement
  - Mid Feb

- Improved building envelope!
Approach

Main entrance - west

View from bridge over river
1. Follows water table
2. Staircase as a reflection
Symbiosis | Grove

**Lateral System**
- CLT walls
- Waterproof concrete walls
- Waterproof concrete foundation slab

**Floors**
- Concrete roof slab
- CLT panels

**Framing**
- Inclined timber columns
- Glulam trusses
Gravity Load

- Gravity load
- Transfer (compression)
- Transfer (tension)
- Foundation (tension)

Lateral Load

- Lateral load
- Transfer (compression)
- Transfer load
- Foundation load

Load Path | Symbiosis Grove
Symbiosis | Mesh

Lateral System

- Inclined steel columns
- Braced core

Floors

- Concrete roof slab
- 3D printed concrete slabs

Framing

- Castellated beams
- Parametric roof
# MEP System Selection

<table>
<thead>
<tr>
<th>Primary</th>
<th>Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grove</td>
<td>Mesh</td>
</tr>
<tr>
<td>Electric boiler + air-cooled chiller</td>
<td>Ground source heat pump</td>
</tr>
<tr>
<td>Dedicated outdoor air system (DOAS)</td>
<td>Air handler unit</td>
</tr>
<tr>
<td>Air handler unit</td>
<td>Natural ventilation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary</th>
<th>Ground and upper levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrium and basement level</td>
<td>Ground and upper levels</td>
</tr>
<tr>
<td>Displacement ventilation</td>
<td>Dedicated outdoor air system (DOAS)</td>
</tr>
<tr>
<td>Radiant floors</td>
<td>Radiant floors</td>
</tr>
<tr>
<td></td>
<td>Fan coil cooling system</td>
</tr>
</tbody>
</table>
0 = Entrance and exploration

Room Legend
- Elevator
- Entrance
- Fire stairs
- Makers Space
- Quiet Study space
- Student Coffee cafe
- Tech
-1 = Class and Collaboration

Room Legend
- Auditorium
- Elevator
- Entrance
- Fire stairs
- Large Classroom
- MEP
- Small Classroom
- Storage
Multifunctional auditorium

- Light stackable chairs
- Multiple arrangements
- Storage incorporated
Mutualism in the Auditorium

Project

Blackout

Open up
2.8m

Castellated beams

Our ventilation solution is very easy to operate
Room Legend
- Elevator
- Fire stairs
- Group work area
- Instructional Lab
- Main Staircase landscape
- Seminar Room
- Seminar room
- Small Classroom
- Storage
- Tech
- Toilets
Level 1 Floor Sandwich | Mesh

Castellated beam

It's a breeze!
2 = Focus and group work

Room Legend

- Elevator
- Fac. Offices
- Faculty Admin. area
- Fire stairs
- Group work area
- Server Backup Room
- Storage
- Tech
- Technical support
- Toilets
Level 2 | Grove

Dimensions in [m]

- Columns 0.3 x 0.3 and 0.2 x 0.2
- Inclined columns 0.4 x 0.3
- Primary beams 0.4 x 0.3
- Secondary beams 0.3 x 0.3
- CLT core walls
- Long span glulam trusses 0.7m

Cantilever
**Level 2 | Mesh**

Dimensions in [m]

- **Columns HEA 260 and HEA 300**
- **Inclined columns hollow steel 0.4m, thickness 0.1m**
- **Primary beams honeycomb 0.5m**
- **Secondary beams honeycomb 0.3m**
- **Braces in the core**
- **Long span honeycomb 0.8m (above auditorium)**

→ **Cantilever**
Site Context | Opportunities + Challenges

- Environmental Protection
- Noise Protection
- Water Protection
- Building Protection

Site Location:
- Park
- ILM River
- Tight Intersections

Site Access:
- South West Access
- North East Access

Historical City Center
Residential Area
Castle
Tight Intersection

Tight Intersections
Site Context | Material Source Map - SMEs

Small Business
“CO2 neutral website”

Off-site Storage
Off-site Parking

Site Location
Timber Supplier
Rammed Earth
Green Roof
Equipment Rental
Storage Facility
Furniture Supplier
Bauhaus-Universität Weimar
Timber Supplier
Insitu Concrete
Cross Laminated Timber
Precast Concrete
Windows & Doors
Steel Supplier
Facade Supplier
Solar Roof & Heat Pump
Dewatering Equipment
Site Logistics | The Water Riddle

- Precast Sloped Trench Drain
- Decorative Gutter
- Pedestrian Path 1m wide & 0.5m deep
- Water Treatment Tank & Submersible Electric Pump 20,000 Liter Capacity

Earth Embankment

20,000 Liter Capacity

Precast Sloped Trench Drain

Water Treatment Tank & Submersible Electric Pump
Site Logistics | The Water Riddle

- Well-point dewatering system
- Spacing between wellpoints: 1.5m Depth of wellpoints: 3m
- Travelling Sprinkler with Hose reel
- Irrigation
- Water Treatment Tank & Submersible Electric Pump

- Depth of Excavation: 1.5 m
- Spacing between wellpoints: 1.5m
- Depth of wellpoints: 3m
Site Logistics | Preserve + Protect

Stormwater Pollution Prevention Plan (SWPPP)

Site Safety and Emergency

Erosion & Sediment Control BMP
- Silt Fence
- Slope protection
- Trench Drain for Rain
- Tree relocation

Material Handling and Waste Management
- Concrete washout areas
- Recycling Area
- Proper material staging areas

SigePlan
- Appoint Safety Manager
- Daily safety training
- Daily Risk analysis

Inspection & Training
- Delegation of authority
- Blweekly training
- Weekly inspections

Corrective Action Log & Scoring
- Corrective action log based on inspections
- Rating chart over time
- Trend improvement using ROI

1: 0 corrective items
2: 1-2 corrective items
3: 3-4 corrective items

Tally of ratings per month

Flood Emergency Plan
- Flood maps
- Local Flood Warning
- Disinfecting post flood
- Move equipment and chemicals
Site Logistics | Drone Topography

Drone photos

- Mesh exported
- Mesh converted
- Mesh inserted

Accurate Topography

Precise construction plan

A - SE - MEP - CM - LCFM

+ Drone photos

Mesh exported
Mesh converted
Mesh inserted

R PRO

RhinoCeros

AUTOCAD

Revit
**Site Logistics | Delivery tracking**

*Vehicle restrictions*

- **Length**: 10m
- **Width**: 2.5m

---

**Vehicle Diagram**

- Mercedes Actros Car Transporter Rigid 4x2 1836L
  - Overall Length: 9.455m
  - Overall Width: 2.494m
  - Overall Body Height: 2.674m
  - Min Body Ground Clearance: 0.173m
  - Track Width: 2.494m
  - Deck to deck line: 9.00m
  - Wall to Wall Turning Radius: 10.360m
<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT excavator (313 GCCAT 323F Z-LINE)</td>
<td>Unplugged Capacity: 6 hours</td>
</tr>
<tr>
<td></td>
<td>Charging Time: 6 hours</td>
</tr>
<tr>
<td>Volvo FE Electric</td>
<td>Width: 2.30m</td>
</tr>
<tr>
<td></td>
<td>Charging Time: &lt; 2 h/11 h</td>
</tr>
<tr>
<td>Liebherr T Electric truck mixer</td>
<td>Capacity: 11.05 m³</td>
</tr>
<tr>
<td>(ETM 1004)</td>
<td>Battery Capacity: 32 kW</td>
</tr>
<tr>
<td>Liebherr mobile crane</td>
<td>Max. radius: 45.00 m</td>
</tr>
<tr>
<td></td>
<td>Max lifting capacity: 8,000 kg</td>
</tr>
<tr>
<td></td>
<td>Electric when plugged</td>
</tr>
<tr>
<td>Volvo L25 Electric</td>
<td>Indicative runtime: Up to 8 hours</td>
</tr>
<tr>
<td>Mercedes Actros Rigid 6x2 2536L</td>
<td>Max Length: 11m</td>
</tr>
<tr>
<td></td>
<td>Electric when plugged</td>
</tr>
<tr>
<td>Liebherr Tower crane (85 EC-B 5)</td>
<td>Max. radius: 50.00 m</td>
</tr>
<tr>
<td></td>
<td>Max. capacity: 5,000 kg</td>
</tr>
<tr>
<td></td>
<td>Electric when plugged</td>
</tr>
</tbody>
</table>
Site Logistics | Excavation phase

- Office
- Shower/W.C.
- Dry/wet Area
- First Aid
- Generator
- Recycle bin
- Concrete washout
- Personnel path
- Stockpile
- Laydown
- Laydown
- Temp. Fence
- Silt Fence (SWPPP)
- Header Pipe
Site Logistics | Foundation phase
**Site Logistics | Superstructure phase | Grove**

**Tower crane**

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less expensive</td>
<td>Assembly time</td>
</tr>
<tr>
<td>Not weather sensitive</td>
<td>Foundation required</td>
</tr>
<tr>
<td></td>
<td>Not flexible</td>
</tr>
</tbody>
</table>

- **Advantages**
  - Less expensive
  - Not weather sensitive

- **Disadvantages**
  - Assembly time
  - Foundation required
  - Not flexible
NEXT YEAR’S SPRING
Next Year’s Spring

Johann Wolfgang von Goethe
(German poet, 18th century)

The bed of flowers,
Hidden with care;
If works and thrives.
Her glances light;
And blooming mind;
In sport, unsullied,
Concept Goals
What will the building augment about reality?

Past - Rammed Earth
- Senses
- Sustainability
- Indoor climate

Future - Walls become alive
- Connectivity
- Immersion
- Interaction
# MEP Design Baseline

## Building and Occupants
- **Floor area**: 2530 m²
- **Peak occupancy**: 250

## User Comfort
- **Indoor temp**: 20-23°C
- **Ventilation**: DGNB Cat II
- **Humidity**: 35-45% RH

## Resource Efficiency
- **Energy budget**: 96,140 kWh
- **Minimize water + natural gas use**
MEP Concept Evolution

Jan 28 | First Concept
Variable air volume (VAV)
Where's the rest of it?

Feb 19 | Crit
Primary
- Boiler / chiller
- Dedicated outdoor air system
- Variable refrigerant flow

Secondary
- Displacement ventilation
- Radiant floors
- Zoning

Complicated!

Stop:
redesign time

Mar | refine + rethink
Primary
- Ground source heat pump

Secondary
- Fan coil cooling
 MEP Load Reduction

- **Initial Massing**
  - Mid Jan
    - Orientation analysis

- **High R windows and curtain walls**
  - Late Jan

- **Window placement**
  - Mid Feb

- **Rammed earth wall insulation**
  - Mid Jan

- **Tree location**
  - Early Feb

- **Improved building envelope!**
  - Late Jan
0 = Variation of spaces
<table>
<thead>
<tr>
<th>Sprout</th>
<th>Steel Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glulam</td>
<td>Steel</td>
</tr>
<tr>
<td>Glulam</td>
<td>Castellated Steel</td>
</tr>
<tr>
<td>CLT shear walls and glulam bracing</td>
<td>Concrete shear walls and steel bracing</td>
</tr>
<tr>
<td>Nanocrystal wood fiber concrete</td>
<td>3D printed concrete</td>
</tr>
<tr>
<td>Shallow piles</td>
<td>Shallow piles</td>
</tr>
</tbody>
</table>
Next Year’s Spring | Sprout

Lateral System
- CLT walls
- Movement joint
- Glulam V bracing

Floors
- 3D printed nanocrystal reinforced concrete slabs

Framing
- Timber Warren trusses
- Glulam columns
- Glulam beams
Next year’s spring | Steel Flower

Lateral System
- Concrete walls
  - Steel X bracing

Framing
- Steel trusses
- Honeycomb steel beams
- Steel columns

Floors
- Movement joint
  - 3D printed concrete slab

Steel Flower Lateral System
- Concrete walls
  - Steel X bracing

Steel Flower Framing
- Steel trusses
- Honeycomb steel beams
- Steel columns

Steel Flower Floors
- Movement joint
  - 3D printed concrete slab
Load Path  |  Steel Flower

**Gravity Load**

- Gravity load
- Transfer (compression)
- Transfer (tension)
- Foundation (tension)

**Lateral Load**

- Lateral load
- Transfer (compression)
- Transfer load
- Foundation load
# MEP System Selection

## Primary

<table>
<thead>
<tr>
<th>Sprout</th>
<th>Steel Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric boiler + air-cooled chiller</td>
<td>Ground source heat pump</td>
</tr>
<tr>
<td>Dedicated outdoor air system (DOAS)</td>
<td>Air handler unit</td>
</tr>
</tbody>
</table>

## Secondary

<table>
<thead>
<tr>
<th>Auditorium + 4-5m ceiling spaces</th>
<th>3m Ceiling Spaces (NW lobe; above auditorium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement ventilation</td>
<td>Dedicated outdoor air system (DOAS)</td>
</tr>
<tr>
<td>Radiant floors</td>
<td>Radiant floors</td>
</tr>
<tr>
<td></td>
<td>Fan coil cooling system</td>
</tr>
</tbody>
</table>
0 = Leading one along

Room Legend
- Auditorium
- Elevator
- Entrance
- Fire stairs
- Group work area
- Large Classroom + sem. rooms
- Sem. Room
- Small Classroom
- Tech shaft
- Toilets

Legend:
- A = SE - MEP - CM - LCFM
Auditorium Floor Sandwich | Sprout

How does Rapunzel keep cool in summer?
1 = Work and views

Room Legend
- Elevator
- Fac. offices
- Fire stairs
- Open student area
- Tech shaft
- Toilets
2 = Visual connections

Room Legend
- Elevator
- Fac. collaboration area
- Fac. Lounge
- Fac. Offices
- Faculty Admin. area
- Fire stairs
- Group work area
- Instructional Lab + Sem. Rooms
- MEP
- Storage
- Storage/ Server room
- Tech shaft
- Tech Support
- Toilets

A - SE - MEP - CM - LCFM
Level 2 | Sprout

Dimensions in [m]

- Columns Glulam 0.35 x 0.35 and 0.2 x 0.2
- Mega columns 0.4 x 0.4
- Primary beams 0.4 x 0.2
- Secondary beams 0.4 x 0.2
- Braces and core walls
- Long spans beams 0.6 x 0.2
- Trusses 0.7m

← Cantilever
Level 2 | Steel Flower

Dimensions in [m]

- Columns HEA 300
- Mega columns HEA 400
- Primary beams honeycomb 0.4m
- Secondary beams HEA 100
- Braces and core walls
- Long spans trusses
- Cantilever
Level 2 Floor Sandwich | Sprout

hAIR conditioning!
Site Logistics | The Water Riddle

What about Dewatering?

Self-drilling micropiles

No Dewatering!

Precast Concrete Bench Wall
Site Logistics | 3D Printing Process

But How?

Max size = 2.5m x 10m
Site Logistics | 3D Printing Process

Sprout - 3D printed Formwork
Steel Flower - 3D printed Concrete
## Site Logistics | 3D Printing Process

<table>
<thead>
<tr>
<th></th>
<th>3D Printed Slab</th>
<th>3D Printed Formwork</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construction Cost</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost of 3D Printer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>High Cement Content</td>
</tr>
<tr>
<td>2</td>
<td>Construction Schedule</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Availability of 3D Printer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Preparation of Panels</td>
</tr>
<tr>
<td>3</td>
<td>CO2 Impact</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Cement Content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Wasted Material</td>
</tr>
</tbody>
</table>
Site Logistics | Green Construction

**Drilling rig MM4**
- Maximum line pull: 600 daN
- Maximum stroke of rotary head: 3.350 m

**Volvo FE Electric**
- Width: 2.30m
- Charging Time: < 2 h/11 h

**Volvo L25 Electric**
- Bucket capacity: 0.9 m³
- Indicative runtime: Up to 8 hours

**Liebherr T Electric truck mixer (ETM 1004)**
- Capacity: 11.05 m³
- Battery Capacity: 32 kW

**Liebherr mobile crane**

**Mercedes Actros Rigid 6x2 2536L**
- Max Length: 11m
- Charging time: < 2 h/11 h
Site Logistics | Construction not Feasible!

Initial Building Layout

No delivery space

New Building Layout
Site Logistics | Foundation Phase + Micro-Piling

- Office
- Shower/W.C.
- Dry/wet Area
- First Aid
- Generator
- Recycle bin
- Concrete washout

Personnel path
Stockpile
Laydown
Temp. Fence
Silt Fence (SWPPP)
Site Logistics | Superstructure Phase

Next Year’s Spring - Sprout

Next Year’s Spring - Steel Flower

Office
Shower/W.C.
Dry/wet Area
First Aid
Personnel path
Stockpile
Laydown
Temp. Fence
Silt Fence (SWPPP)
Generator
Recycle bin
Concrete washout
Site Logistics | Crane comparison

Pay more for less time?

Two mobile cranes
Site Logistics | Robots integration

Grove  Sprout  Mesh  Sprout  Steel Flower

Overhead Drilling Robot

- Grove
- Sprout
- Mesh
- Steel Flower

Robot-assisted manufacturing process

SafeAI and autonomous Vehicle

Grove  Mesh
FINAL DECISION
The Integration

BKI

River Team | Cost Database

Quantity Takeoff

Life Cycle Cost

BIM Execution Plan
Team River
AEC Class 2021

STV

The Integration

A - SE - MEP - CM - LCFM
Target Value Design | Comparison

A - SE - MEP - CM - LCFM
Sustainable Target Value | Comparison

Symbiosis | Grove

Next Year's Spring | Sprout

Next Year's Spring | Steel Flower

A - SE - MEP - CM - LCFM
Life Cycle Cost | Comparison

- Symbiosis's Grove: 2.860.000 €
- Symbiosis's Mesh: 2.790.000 €
- NYS Sprout: 2.910.000 €
- NYS Steel Flower: 3.030.000 €

Construction Costs: Green
M&O: Blue
Replacement Costs: Yellow
Risk and Insurance: Orange
Total Financing Costs: Lt. Green
Total Taxes: Two Tones Blue

Costs: €
## Life Cycle Cost Comparison

<table>
<thead>
<tr>
<th></th>
<th>Symbiosis</th>
<th>Symbiosis</th>
<th>NYS</th>
<th>NYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grove</td>
<td>Mesh</td>
<td>Sprout</td>
<td>Steel Flower</td>
</tr>
<tr>
<td>Construction Cost</td>
<td>8.250.000 €</td>
<td>8.420.000 €</td>
<td>8.130.000 €</td>
<td>7.820.000 €</td>
</tr>
<tr>
<td>M &amp; O Cost</td>
<td>4.160.000 €</td>
<td>4.220.000 €</td>
<td>4.350.000 €</td>
<td>3.900.000 €</td>
</tr>
<tr>
<td>Replacement Cost</td>
<td>1.500.000 €</td>
<td>1.570.000 €</td>
<td>1.310.000 €</td>
<td>1.640.000 €</td>
</tr>
<tr>
<td>Risk &amp; Insurance</td>
<td>1.210.000 €</td>
<td>1.150.000 €</td>
<td>1.120.000 €</td>
<td>1.120.000 €</td>
</tr>
<tr>
<td>Financing Cost</td>
<td>3.900.000 €</td>
<td>3.850.000 €</td>
<td>3.930.000 €</td>
<td>4.010.000 €</td>
</tr>
<tr>
<td><strong>Total Life Cycle Cost</strong></td>
<td><strong>19.020.000 €</strong></td>
<td><strong>19.210.000 €</strong></td>
<td><strong>18.840.000 €</strong></td>
<td><strong>18.490.000 €</strong></td>
</tr>
</tbody>
</table>
Risk Management | Calculation

“A good rule of thumb is to assume that everything matters.”
Richard Thaler

1. Analyze Data to calculate annual **probability**
2. Apply Binomial Distribution with 24 repetitions
3. Apply Triangle Distribution **Impact** Low, Likely, High
4. Multiply Probability and Impact Receive **Risk Costs**
Risk Management | What matters?

Identify  Analyze  Evaluate  Treat  Monitor

Climate > News

Hibernating lizards and snakes halt construction at Tesla ‘gigafactory’ in Berlin

Environment groups warn relocation of European protected species cannot be done quickly

Harry Cockburn  |  Wednesday 09 December 2020 11:46  |  comments
Executive Summary | Symbiosis + Next Year’s Spring

- Build around the auditorium
- Integrated Staircase
- Either Glulam vs. Steel Structure
- CLT vs. 3D printed slab
- Boiler, chiller vs. heat pump system
- Just in time vs. Off-site storage facility

- Rammed Earth
- Large variation in spaces
- 3D printed slabs
- CLT vs Concrete Walls
- Timber Trusses vs Steel Diagrid
- Boiler, chiller vs. heat pump system
Communication
Collaboration
Cooperation
A Week in the life of an AEC Student
Decision Making

- ARCHITECTURAL
- SUSTAINABILITY
- THRILL
- USABILITY
- FINANCING

A - SE - MEP - CM - LCFM
Continuing with Next Year's Spring
Outlook and Challenges
THANK YOU FOR YOUR ATTENTION!

Teamwork makes the dream work
### Construction Schedules | Symbiosis Grove

**Table of Activities**

<table>
<thead>
<tr>
<th>Activity ID</th>
<th>Activity Name</th>
<th>Original Duration</th>
<th>Start Date</th>
<th>Finish Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM.1</td>
<td>Symbiosis - Grove</td>
<td>390</td>
<td>01-Jan-24</td>
<td>01-May-24</td>
</tr>
<tr>
<td>SYM.1.1</td>
<td>Milestones &amp; Key Dates</td>
<td>348</td>
<td>01-Jan-24</td>
<td>01-Apr-25</td>
</tr>
<tr>
<td>SYM.1.2</td>
<td>Preconstruction</td>
<td>221</td>
<td>02-Jan-24</td>
<td>12-Feb-24</td>
</tr>
<tr>
<td>SYM.1.2.1</td>
<td>Site Development</td>
<td>164</td>
<td>03-Jan-24</td>
<td>22-Jan-24</td>
</tr>
<tr>
<td>SYM.1.2.2</td>
<td>Prepurchase</td>
<td>448</td>
<td>02-Jan-24</td>
<td>08-Feb-24</td>
</tr>
<tr>
<td>SYM.1.2.3</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.3.1</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.3.2</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.3.3</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.3.4</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.3.5</td>
<td>Site Preparation</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
<tr>
<td>SYM.1.4</td>
<td>Closeout</td>
<td>148</td>
<td>02-Jan-24</td>
<td>27-Aug-24</td>
</tr>
</tbody>
</table>

**Diagram**

- **Extraction Phase 1**: Extraction Phase 1
- **Wet-and-Dry Work**: Wet-and-Dry Work
- **Waterproofing**: Waterproofing
- **Service Fixtures**: Service Fixtures
- **Testing of MEP**: Testing of MEP
- **Commissioning and Handover**: Commissioning and Handover
- **Final Completion (FOC)**: Final Completion (FOC)
- **Shelving**: Shelving
- **Electrical**: Electrical
- **Reinforcement**: Reinforcement
- **Framing**: Framing
- **Plumbing**: Plumbing
- **Electrical**: Electrical
- **Framing**: Framing

**Legend**

- **Dark Green**: Construction
- **Dark Blue**: Site Preparation
- **Dark Red**: MEP
- **Dark Purple**: CM
- **Yellow**: LCFM

**Timeline**

- **Jan**: January
- **Feb**: February
- **Mar**: March
- **Apr**: April
- **May**: May
- **Jun**: June
- **Jul**: July
- **Aug**: August
- **Sep**: September
- **Oct**: October
- **Nov**: November
- **Dec**: December
# Construction Schedules | Symbiosis Mesh

<table>
<thead>
<tr>
<th>Activity ID</th>
<th>Activity Name</th>
<th>Original Date</th>
<th>Start</th>
<th>Finish</th>
<th>Tob/Rel</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM.2.1</td>
<td>Symbiosis Mesh</td>
<td>20/Jan-24</td>
<td>01/Jan-24</td>
<td>23/Jan-24</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.1.1</td>
<td>Milestones &amp; Key Dates</td>
<td>20/Jan-24</td>
<td>23/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.2.1</td>
<td>Preconstruction</td>
<td>30/Jan-24</td>
<td>12/Jan-24</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.2.2</td>
<td>Preconstruction</td>
<td>30/Jan-24</td>
<td>15/Jan-24</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-400 Mob.</td>
<td>15/Jan-24</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-110 Battey Charging Station</td>
<td>15/Jan-24</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.2.3</td>
<td>Permit/Approvals</td>
<td>30/Jan-24</td>
<td>01/Jan-24</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1000 Dr.</td>
<td>30/Jan-24</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.3</td>
<td>Construction</td>
<td>27/Jan-24</td>
<td>04/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.1 Site Preparation</td>
<td>27/Jan-24</td>
<td>14/Jan-24</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.2 Grouting</td>
<td>27/Jan-24</td>
<td>14/Jan-24</td>
<td>135</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.3 Earthwork</td>
<td>27/Jan-24</td>
<td>07/Jan-24</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.3.1 Excavation Phase</td>
<td>27/Jan-24</td>
<td>21/Jan-24</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.3.2 Trench Dig.</td>
<td>27/Jan-24</td>
<td>04/Jan-24</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.3.3 Dewatering</td>
<td>27/Jan-24</td>
<td>15/Jan-24</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.3.4 Excavation</td>
<td>27/Jan-24</td>
<td>15/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM.2.3.4</td>
<td>Excavation Works</td>
<td>27/Jan-24</td>
<td>27/Jan-24</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.4.1 Perimeter Walls</td>
<td>27/Jan-24</td>
<td>27/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.4.2 Substructure</td>
<td>27/Jan-24</td>
<td>04/Jan-24</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.4.3 Substructure</td>
<td>27/Jan-24</td>
<td>04/Jan-24</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.5 Shell Construction</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.5.1 Seal</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6 Exit</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.1 Roofing</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.2 Exterior Finishes</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.3 Exterior Finishes</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.4 Interior Finishes &amp; Specials</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.5 Interiors</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.6 Services</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.7 Dewatering &amp; Equipment</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SYM.2.3.6.8 Dewatering &amp; Equipment</td>
<td>27/Jan-24</td>
<td>24/Jan-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SYM.2.4</td>
<td>Closeout</td>
<td>27/Jan-24</td>
<td>22/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYM.2.4.1 Final Completion</td>
<td>27/Jan-24</td>
<td>22/Jan-24</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Construction Schedules | Next Year’s Spring - Sprout

<table>
<thead>
<tr>
<th>Activity ID</th>
<th>Activity Name</th>
<th>Original Duration</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>Total Float</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYS.1</td>
<td>Next Year’s Spring - Sprout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.1</td>
<td>Milestones &amp; Key Dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.2</td>
<td>Preconstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.2.1</td>
<td>Preliminaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.1</td>
<td>Sitework</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.1.1</td>
<td>Site Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.2</td>
<td>Exterior Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.3</td>
<td>Superstructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.3.1</td>
<td>Shell Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.3.4</td>
<td>Roofing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.5</td>
<td>Exterior Finishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.6</td>
<td>Interior Finishes &amp; Specialties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.7</td>
<td>MEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.3.8</td>
<td>Furnishing and Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.1.4</td>
<td>CLOSEOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Timeline

- **2024:**
  - January: Planning and Design
  - February: Site Preparation
  - March: Preconstruction
  - April: Refining and Design
  - May: Site Preparation
- **2025:**
  - January: Site Preparation
  - February: Preconstruction
  - March: Design Finalization

### Milestones
- Mobilization
- Electric Charging Station
- Grading
- Precast Concrete Deck
- Hollowbar micropiles
- Pile cap
- SOG
- Shell
- Roofing
- Exterior finishes
- Interior finishes
- Services 1st Fix
- Services 2nd Fix
- Furnishing & Equipment
- Testing of MEP
- Contingency allowance
- Commissioning and Handover
- Final Project Completion Date
# Construction Schedules | Next Year’s Spring Steel Flower

<table>
<thead>
<tr>
<th>Activity ID</th>
<th>Activity Name</th>
<th>Original Duration</th>
<th>Start</th>
<th>Finish</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>NYS.2 Next Year's Spring - Steel Flow</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYS.2.1</td>
<td>Milestones &amp; Key Dates</td>
<td>344</td>
<td>08-Jan-24</td>
<td>01-May-25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NYS.2.2</td>
<td>Preconstruction</td>
<td>30</td>
<td>08-Apr-24</td>
<td>17-May-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NYS.2.2.1</td>
<td>Preliminaries</td>
<td>30</td>
<td>08-Apr-24</td>
<td>17-May-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-100 Mobilization</td>
<td>15</td>
<td>08-Apr-24</td>
<td>20-Apr-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-110 Electric Charging Station</td>
<td>15</td>
<td>29-Apr-24</td>
<td>17-May-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NYS.2.3</td>
<td>Construction</td>
<td>147</td>
<td>20-May-24</td>
<td>10-Dec-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slawark</td>
<td>70</td>
<td>20-May-24</td>
<td>02-Sep-24</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.1 Site Preparation</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>E-100 Grading</td>
<td>2</td>
<td>20-May-24</td>
<td>21-May-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NYS.2.3.2 Exterior Work</td>
<td>10</td>
<td>20-Aug-24</td>
<td>02-Sep-24</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX-100 Precast Concrete Béch</td>
<td>10</td>
<td>20-Aug-24</td>
<td>02-Sep-24</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.3 Substructure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUB-100 Hollow bar micropiles</td>
<td>2</td>
<td>22-May-24</td>
<td>23-May-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUB-110 Pile cap</td>
<td>10</td>
<td>24-May-24</td>
<td>05-Jun-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUB-120 SOG</td>
<td>7</td>
<td>07-Jun-24</td>
<td>17-Jun-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.4 Superstructure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NYS.2.3.4 ShellConstruction</td>
<td>20</td>
<td>18-Jun-24</td>
<td>15-Jul-24</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>SU-100 Shell</td>
<td>20</td>
<td>18-Jun-24</td>
<td>15-Jul-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NYS.2.3.5 Roofing</td>
<td>10</td>
<td>10-Jul-24</td>
<td>24-Jul-24</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.5 Exterior Finishes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>EF-100 Exterior finishes</td>
<td>30</td>
<td>06-Jul-24</td>
<td>16-Aug-24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.6 Interior Finishes &amp; Specialties</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F-100 Interiors</td>
<td>50</td>
<td>06-Jul-24</td>
<td>23-Sep-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.7 MEP</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ME-100 Services 1st Fix</td>
<td>15</td>
<td>09-Jul-24</td>
<td>29-Jul-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ME-110 Services 2nd Fix</td>
<td>15</td>
<td>24-Sep-24</td>
<td>14-Oct-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NYS.2.3.8 Furnishing and Equipment</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F-100 Furnishing &amp; Equipment</td>
<td>20</td>
<td>13-Nov-24</td>
<td>10-Dec-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NYS.2.4</td>
<td>CLOSEOUT</td>
<td>86</td>
<td>15-Oct-24</td>
<td>1-HFeb-25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-101 Testing of MEP</td>
<td>20</td>
<td>15-Oct-24</td>
<td>12-Nov-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-102 Contingency allowance</td>
<td>25</td>
<td>11-Dec-24</td>
<td>14-Jan-25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-103 Commissioning and Handover</td>
<td>20</td>
<td>15-Jan-25</td>
<td>1-HFeb-25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-104 Final Project Completion Date</td>
<td>0</td>
<td>11-Feb-25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TVD Symbiosis Grove

TARGET VALUE DESIGN WALL - Symbiosis Grove

Budget = €11,000,000

<table>
<thead>
<tr>
<th>RIVER TEAM</th>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>€ 8,251,016.57</td>
<td>€ 10,000,000.00</td>
<td>€ 1,748,983.43</td>
</tr>
</tbody>
</table>

Gross Square Meters: 2,814
Price = € 2894/m²

COST ESTIMATE

- Building Structure: € 326,951.90 (4%)
- General Conditions: € 1,002,228.49 (32%)
- A Substructure: € 948,985.48 (32%)
- E Equipment and Figs: € 55,086.55 (1%)
- C Shell: € 2,553,000 (50%)
- F Specialty Construction: € 620,022.35 (22%)

A - SE - MEP - CM - LCFM
# TVD Symbiosis Mesh

## TARGET VALUE DESIGN WALL - Symbiosis Mesh

Budget = €11,000,000

<table>
<thead>
<tr>
<th>RIVER TEAM</th>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>€8,490,714.25</td>
<td>€10,000,000.00</td>
<td>€1,509,285.75</td>
</tr>
</tbody>
</table>

### TVD - SUMMARY

- **€10,000,000.00**
- **€8,490,714.25**
- **€1,509,285.75**

### TVD - TARGETS BY CLUSTER

- **TARGET VALUE**
- **ESTIMATED VALUE**
- **VALUE DELTA**

### COST ESTIMATE

- **A Substructure**: €1,011,643.64 (11%)
- **B Shell**: €2,036,100.15 (11%)
- **C Interiors**: €598,428.27 (6%)
- **D Services**: €2,671,906.10 (11%)
- **E Equipment and Furnishing**: €31,207.66 (1%)
- **F Speciality Construction**: €270,251.15 (3%)
- **G Building Shellwork**: €240,336.83 (4%)
- **H General Conditions**: €1,108,851.37 (13%)

### TVD - TRACKING TARGET OVER TIME

- **TARGET**
- **ESTIMATE**
- **DELTA**

### ESTIMATE OVERALL RELIABILITY

- High: 9%
- Medium: 64%
- Low: 27%

### ESTIMATE COST DATA RELIABILITY

- High: 11%
- Medium: 79%
- Low: 10%

### ESTIMATE QUANTITY RELIABILITY

- High: 48%
- Medium: 28%
- Low: 23%
TVD | Next Year’s Spring Sprout

TARGET VALUE DESIGN WALL - Next Year’s Spring Sprout

Budget = €11,000,000

<table>
<thead>
<tr>
<th>RIVER TEAM</th>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>€ 8,134,284.75</td>
<td>€ 10,000,000.00</td>
<td>€ 1,865,715.25</td>
</tr>
</tbody>
</table>

Gross Square Meters 3,140

Price = € 2569/m²

COST ESTIMATE

- G Building Infrastructure € 203,038.45 3%
- I General Conditions € 5,000,000.00 13%
- II Speciality Construction € 270,920.15 3%
- III Equipment and Furnishing € 55,000.11 1%
- IV Services € 2,656,251.12 39%
- D Interiors € 1,653,300.55 51%

TVD - SUMMARY

- € 12,000,000.00
- € 10,000,000.00
- € 8,154,284.75
- € 2,845,715.25

TVD - TARGETS BY CLUSTER

- TARGET VALUE
- ESTIMATED VALUE
- VALUE DELTA

TVD - TRACKING TARGET OVER TIME

TARGET

- € 14,000,000.00
- € 12,000,000.00
- € 10,000,000.00
- € 8,000,000.00
- € 6,000,000.00
- € 4,000,000.00
TVD | Next Year’s Spring Steel Flower

TARGET VALUE DESIGN WALL - Next Year’s Spring Steel Flower

Budget = €11,000,000

RIVER TEAM

<table>
<thead>
<tr>
<th>ESTIMATED VALUE</th>
<th>TARGET VALUE</th>
<th>VALUE DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>€7,816,963.25</td>
<td>€10,000,000.00</td>
</tr>
</tbody>
</table>

Gross Square Meters | 3,056
Price = € 2536/m²

COST ESTIMATE

ESTIMATE QUANTITY RELIABILITY
HIGH 40%
LOW 22%
MEDIUM 38%

ESTIMATE COST DATA RELIABILITY
HIGH 11%
LOW 8%
MEDIUM 81%

ESTIMATE OVERALL RELIABILITY
HIGH 0%
LOW 36%
MEDIUM 66%
Site Logistics | Preserve & Protect

Stormwater Pollution Prevention Plan (SWPPP)

- Historic Preservation
- Erosion & Sediment Control BMP
- Concrete Washout
- Training and Tracking
- Biweekly Training
- Trench Drain
- Silt Fence
- KPI
**Site Layout | Supermarket Approach**

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement freedom</td>
<td>Tight intersections</td>
</tr>
<tr>
<td>Lower delay risk</td>
<td>Road restrictions (width)</td>
</tr>
<tr>
<td>No material storage</td>
<td></td>
</tr>
</tbody>
</table>

**Route (9 mins by car)**

- **Storage**
- **Site**
- **Truck route from storage to site**
Site Logistics | Equipment Selection

**CAT small excavator (313 GC)**
- **Bucket:** GD 0.53 m³ (0.69 yd³)
- **Max Digging Depth:** 6.04 m

**JCB articulated truck (ADT 714)**
- **Capacity:** 7.34 m³
- **Width:** 2.50m

**Liebherr concrete mixer (LTB 12 RO/GL)**
- **Radius:** 11.5m
- **Capacity:** 70 m³/h

**Liebherr Tower crane (85 EC-B 5)**
- **Max. radius:** 50.00 m
- **Max. capacity:** 5,000 kg

**Mercedes Actros Rigid 6x2 2536L**
- **Length:** 9.5m
- **Width:** 2.5 m
Symbiosis Level -1 Distribution Tree
Symbiosis Level 0 Distribution Tree
Symbiosis Level 1 Distribution Tree
Symbiosis Level 2 Distribution Tree
Next Year's Spring Level 0 Distribution Tree
Next Year's Spring Level 1 South Distribution Tree

5m ceilings
Next Year’s Spring Level 2 Distribution Tree
## Full Life Cycle Cost

<table>
<thead>
<tr>
<th>Life Cycle Cost</th>
<th>Symbiosis Grove</th>
<th>Symbiosis Mesh</th>
<th>NYS Sprout</th>
<th>NYS Steel Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>€ 23,687,853,17</td>
<td>€ 23,687,853,17</td>
<td>€ 23,687,853,17</td>
<td>€ 23,687,853,17</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>€ 8,250,000</td>
<td>€ 8,420,000</td>
<td>€ 8,130,000</td>
<td>€ 7,820,000</td>
</tr>
<tr>
<td>M&amp;O</td>
<td>€ 4,160,000</td>
<td>€ 4,220,000</td>
<td>€ 4,350,000</td>
<td>€ 3,900,000</td>
</tr>
<tr>
<td>Replacement Costs</td>
<td>€ 1,500,000</td>
<td>€ 1,570,000</td>
<td>€ 1,310,000</td>
<td>€ 1,640,000</td>
</tr>
<tr>
<td>Risk and Insurance</td>
<td>€ 1,210,000</td>
<td>€ 1,150,000</td>
<td>€ 1,120,000</td>
<td>€ 1,120,000</td>
</tr>
<tr>
<td>Total Financing Costs</td>
<td>€ 1,040,000</td>
<td>€ 1,060,000</td>
<td>€ 1,020,000</td>
<td>€ 980,000</td>
</tr>
<tr>
<td>Total Taxes</td>
<td>€ 2,860,000</td>
<td>€ 2,790,000</td>
<td>€ 2,910,000</td>
<td>€ 3,030,000</td>
</tr>
<tr>
<td>FT</td>
<td>€ 3,900,000</td>
<td>€ 3,850,000</td>
<td>€ 3,930,000</td>
<td>€ 4,010,000</td>
</tr>
<tr>
<td>Total Life Cycle Cost</td>
<td>€ 19,020,000</td>
<td>€ 19,210,000</td>
<td>€ 18,840,000</td>
<td>€ 18,490,000</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>€ 1,670,000</td>
<td>€ 1,550,000</td>
<td>€ 1,747,993</td>
<td>€ 2,020,000</td>
</tr>
<tr>
<td>Internal Rate on Return</td>
<td>11,3%</td>
<td>10,8%</td>
<td>11,6%</td>
<td>13,1%</td>
</tr>
<tr>
<td>Life Cycle Cost p.a.</td>
<td>€ 760,800</td>
<td>€ 768,400</td>
<td>€ 753,600</td>
<td>€ 739,600</td>
</tr>
<tr>
<td>Category</td>
<td>Category Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural</td>
<td>Open Spaces, Aesthetics, Welcoming design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td>STV, Mental Health, Recyclability, Equity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usability</td>
<td>Room for interactions, Innovations, Comfort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing</td>
<td>Life Cycle Costs, Internal Rate on Return, TVD, Construction Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrill</td>
<td>Over all excitement for the concept, design, structure, construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>